
X9Assist

X9Ware
LLC

White Paper
On

X9 File Testing

Revision Date: 08/25/2022
Release R4.10

Copyright 2012 – 2020 X9Ware LLC
All enclosed information is proprietary to X9Ware LLC

X9Ware LLC
10753 Indian Head Industrial Blvd

St Louis, Missouri 63132-1101
(844) 937-1850

Email: sales@x9ware.com  

X9Ware LLC Page 1 of 18

mailto:sales@x9ware.com


X9Assist

Problem StatementProblem Statement

Building quality systems has always required robust capabilities to quickly and easily manufacture test 
data for the specific conditions that must be tested.  Test data must be targeted at the specific conditions
that are represented by individual test cases. 

 X9 (image exchange) application testing has been complicated by the fact that test files must have their 
“data” and “image” components created in a fully correlated fashion.  However, it is difficult to generate 
such files, since the creation of the check images is a complex problem.  As a result, many organizations 
have reverted to creating paper tickets (using encoding machines) that are then captured and used to 
prepare the required test X9 files.  This is both a complex and labor intensive operation.  Other 
organizations have indicated that they cannot directly solve this problem and instead utilize production 
files for their testing, to the dismay of the management and audit teams.  

A very effective way to test any application is to build a repository of test conditions which have an 
expected result.  Although this is also complex, the repository becomes a very effective tool for 
regression testing that can be applied as a standard measure when application changes are being made.  
In these situations, the repository is first run against a production version of the application and used to 
create a baseline.  The repository can then be used in future tests and compared to the baseline.  The 
repository should be viewed as a “living” set of test cases that would continue to be expanded and 
improved as part of application maturity.

Performance testing requires a large amount of appropriate data to push the application to a desired 
stress level.  The test data must be relevant and must high volume.  In accordance with management and
audit requirements, this should not be “production” data but should instead by sanitized to ensure that 
customer data is not compromised as a part of this testing process.

In summary, a fully functional X9 data generation tool must support the following types of functions:

 Creation of x9 files (data and images) from use case definitions
 Ability to build a repository of test cases which can be used for regression testing
 Ability to sanitize production files to easily create representative test files
 Ability to create high volume stress files from sanitized production data 

X9Ware LLC Page 2 of 18



X9Assist

Testing PhasesTesting Phases

Let’s first define a list of phases that are traditionally utilized within most testing frameworks.  The 
overall phases required by successful x9 file testing is similar to any other business application.  These 
testing steps will vary from organization to organization, but the overall intent is as follows:  

Testing Phase Description
1) Unit Testing Initial tests of application components in a lower level environment 

to ensure their correct behavior prior to the initiation of higher levels
of testing. 

2) Functional testing Functional testing will validate that an application conforms to its 
specifications and correctly performs all its required business and 
technical functions.  This testing will apply a series of tests (test 
cases) which perform a feature by feature validation of behavior, 
using a wide range of normal and erroneous input data. This can 
involve testing of the product's user interface, APIs, database 
management, security, installation, networking, and external 
application interfaces.  Functional testing is often performed on a 
cycle by cycle basis, where failures within each cycle are tracked and 
are then ensured to be resolved in subsequent cycles.  

3) Regression testing Regression testing is the process of running and validating all 
repository based test cases as a part of the testing process for each 
new application release.  Regression testing provides a consistent 
and repeatable validation of every new application release.  The 
purpose is to ensure that the implementation of new enhancements 
and the resolution of identified problems has not resulted in the 
introduction of new issues.  Athough regression testing can be 
performed manually, it typically requires the creation of approved 
test cases for the application that are then tracked by a problem 
management system.  The test case repository for the application 
can be grown over time as part of the application maturity process.  

4) Integration testing Integration testing will typically look at an overall suite of 
applications that are combined and tested on an end-to-end basis as 
a logical group. The goal of integration testing is to ensure that 
application interfaces and handoffs are operating per all defined 
specifications.  These applications may be either internally or 
externally developed and supported.  This testing is critical in 
complex environments where independent applications have been 
integrated to meet business requirements.  

5) Performance testing Performance testing is used to measure application scalability 
against defined non-functional requirements.  The goal is to identify 
bottlenecks and limiting factors within the application as well as in 
other areas such as database servers, the network, middleware, third

X9Ware LLC Page 3 of 18



X9Assist

party products, and related downstream applications.  Performance 
testing is required by business critical applications that demand high 
availability and reliability.  Performance testing generally involves an 
automated test suite that can be used to simulate a variety of 
normal, peak, and high load conditions.

6) Acceptance testing Acceptance testing is performed in the final stages of an overall 
testing process to verity that an application meets all business and 
technical requirements.  Acceptance testing is focused on all aspects 
of the application and provides the final approval to proceed with 
the installation. 

X9Ware LLC Page 4 of 18



X9Assist

FFIEC Testing StandardsFFIEC Testing Standards

The FFIEC (supported by the FRB) clearly indicates that use of production data in test systems is either 
prohibited or requires appropriate protection methodologies to ensure data confidentiality is 
maintained.  However, many organizations continue to test their x9 applications using production x9 
data, and many times as the fundamental basis of their testing plan.  

The FFIEC standards can be viewed here:  

http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/project-management/project-
management-standards

FFIEC standards are clear that use of production data is the least desirable approach to testing.  Using 
manufactured data is preferred since it minimizes the potential escape of confidential from the testing 
process.  Use of production data requires adequate controls to ensure customer data confidentiality is 
maintained at all times.  

Quoted excerpts from the FFIEC stated policies are as follows:  

What is the FFIEC InfoBase?   

“The Federal Financial Institution Examination Council (FFIEC) is a formal interagency body empowered to 
prescribe uniform principles, standards, and report forms for the federal examination of financial institutions by 
the Board of Governors of the Federal Reserve System (FRB), the Federal Deposit Insurance Corporation (FDIC), 
the National Credit Union Administration (NCUA), the Office of the Comptroller of the Currency (OCC), and 
the Consumer Financial Protection Bureau (CFPB), and to make recommendations to promote uniformity in the 
supervision of financial institutions. In 2006, the State Liaison Committee (SLC) was added to the Council as a 
voting member. The SLC includes representatives from the Conference of State Bank Supervisors (CSBS), the 
American Council of State Savings Supervisors (ACSSS), and the National Association of State Credit Union 
Supervisors (NASCUS ). Visit the Council's website for press releases and information on the mission and work of
the Council athttp://www.ffiec.gov/.

The FFIEC Examiner Education Office created the FFIEC InfoBase, which is a vehicle that enables prompt delivery 
of introductory, reference, and educational training material on specific topics of interest to field examiners 
from the FFIEC member agencies. The IT Handbooks are updated and maintained electronically using the 
InfoBase vehicle.”

FFIEC Testing Standards  

“Management should establish testing standards that require the use of predefined, comprehensive test plans, 
end-user involvement, and documented test results. Additionally, testing standards should prohibit testing in 
production environments or with live data. If copies of live (customer) data are used during tests, 
management should ensure that appropriate standards exist to protect the confidentiality of that data. 
Management can use test data generators, which are software applications that generate representative 

X9Ware LLC Page 5 of 18

http://www.ffiec.gov/
http://www.nascus.org/
http://www.acsss.org/
http://www.csbs.org/
http://www.consumerfinance.gov/
http://www.occ.gov/
http://www.ncua.gov/
http://www.fdic.gov/
http://www.federalreserve.gov/
http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/project-management/project-management-standards
http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/project-management/project-management-standards


X9Assist

testing data based upon predefined parameters, to develop appropriate testing data. Numerous automated 
applications are also available that test program logic, functional operability, and network interoperability.”

X9 Testing Using Production Data?X9 Testing Using Production Data?  

Various arguments are often made as to why production data must be utilized for x9 testing.  These 
arguments exist and persist in a large number of x9 testing environments.  What are the realities 
associated with those arguments?  

We test with x9 production data because
…..

Situation

1) Captured account information must 
match the “systems of record” that are 
downstream from the x9 capture 
environment 

This is a weak argument which goes against most 
testing methodologies, and is difficult to defend to 
either internal or external auditors.  Standard testing 
methodologies require that test environments have a 
defined test bed which includes the account numbers
and attributes that are needed to support the test 
cases.  Testing is not a blind process where you simply
run “everything”.  The use of production data may be 
an arguable position as participating data (one of 
several sources) for a particular phase of testing (eg, 
the Acceptance Testing phase) but it should not be 
defined as the sole basis for the entire testing 
environment.  

2) We do not have any source for x9 cash 
letter files other than production itself; 
our only alternative would be to encode 
and capture paper transactions 

This position does not take into consideration that 
tools do exist to support the creation of x9 test files.  
The FFIEC has recommended that organizations 
investigate and use test data generators to assist in 
the creation of test files.  There are tools that will 
create test transactions, and there are additional 
tools that will then build x9 cash letters from the 
generated transactions. 

3) It would be an overwhelming task to 
define and build a large number of test 
cases to represent our x9 check 
transactions 

X9 testing tools can be used to extract test cases from
either your test system or from your x9 production 
files.  

4) It is a difficult technical task to create x9 
transactions from individual test case 
definitions.  

X9 Testing tools can be used to either create check 
detail (type 25) records or return detail (type 31) 
records from your test case repository.  

5) Our application testing process requires 
that the x9 check transaction matches the
associated image; even if we generate 
test transactions, there is no way to then 
generate the required matching images 

X9 testing tools can be used to create the required 
front and back tiff images from the check transactions
that are generated from your test cases.  

X9Ware LLC Page 6 of 18



X9Assist

We test with x9 production data because
…..

Situation

6) X9 files have complex header and trailer 
records that are not easily created

X9 testing tools can be used to wrap your check 
transactions with all of the needed header records, 
trailer records, and control totals  that are required to
create a valid x9 cash letter file.  

7) We want to test specific invalid x9 data 
conditions that have caused production 
problems in the past, so we have saved 
those production files and we always 
include them in testing 

X9 testing tools can be used to modify fields on test 
transactions to generate any test condition that you 
require.  

X9 testing tools also exist that will allow you to export
error transactions and then merge them into a 
consolidated cash letter which can then be utilized for
exception testing.  

8) We need to include code line data 
mismatch items in our testing process, 
and the only easy source of that test data 
is a production file that has that specific 
problem

X9 testing tools can be used to automatically create 
one or more image mismatch sequences within an x9 
file.  

9) We need to include invalid tiff image 
conditions in our testing process, and the 
only easy source of that test data is a 
series of production x9 files that include 
those problems

X9 testing tools will allow you to create a wide variety
of invalid tiff image conditions.  Conditions can be 
automatically generated that will test all x9.100-181 
image validations.  

10) We need large x9 files for volume and 
stress testing, and there is no reasonable 
source of large test files other than the 
use of production x9 files

X9 testing tools can be used to automatically create 
very large x9 cash letter files.  A variety of strategies 
exist including generation from your test cases, the 
use of randomly created data, or the cloning of a 
small number of transactions to create very large x9 
files.  

X9Ware LLC Page 7 of 18



X9Assist

X9 Testing ChallengesX9 Testing Challenges

There are several issues that complicate the creation of x9 test files:  

Challenge Why it is Complex
1) Define test cases Tools must be used to allow test cases to be easily 

defined, communicated, and maintained.  
2) Build and maintain a test case 

repository
A repository of test cases must be constructed and stored 
(a complex and time consuming effort). 

3) Create x9 header record 
configurations 

Files must be created where the file and cash letter 
header records match the validation rules that have been 
built into the capture system.  Otherwise, the x9 file will 
be immediately rejected.  

4) Create x9 records and fields X9 files are structurally complex with various standards 
that dictate their creation.  Records must be created in 
the appropriate order, with the required fields, 
justification, and values.  Control totals must match the 
generated records and fields.  

5) Create images that match the MICR 
test cases

The x9 file must have images that logically match the 
MICR test case.  This requirement for a matching image 
can be system based, where a sophisticated capture 
application is extracting information from the check 
image and comparing it to the type 25/31 record.  The 
requirement for a matching image may instead be more 
visual in nature, where there are benefits of having a 
matching image.   

6) Create x9 files that contain invalid x9 
fields per x9 standards 

While it is important to create x9 files with valid data, it is 
equally important to create x9 files that contain x9 fields 
that are invalid per x9 rules.  

7) Create large x9 files for volume and 
stress testeing 

Large x9 files are inherently difficult to create; you can 
often run out of memory when working with large x9 files.

8) Merge x9 files It is difficult to retain the header and trailer records from 
one x9 file while inserting the bundles and check records 
from a second file into the first.  There are situations 
where combining x9 files can be very helpful, since you 
can combine multiple test conditions, across various x9 
files, into a single file that can then be tested.  

9) Create image mismatch conditions, 
where the image does not match the 
x9 records 

Image mismatch has become a huge problem in the 
industry that needs to be regression tested whenever 
application changes are being installed.  However, there is
no easy way to intentionally create an image mismatch 
file.  Because of this, many organizations will use a 
production mismatch file for this testing, which goes 
against FFIEC testing standards.  

X9Ware LLC Page 8 of 18



X9Assist

Challenge Why it is Complex
10) Create invalid tiff images (which do 

not conform to the x9.100-181 
standard)

There is a substantial list of tiff image requirements per x9
industry standards.  Many image applications will crash 
when presented with invalid tiff images.  However, there 
is no way to purposely create tiff images that violate the 
x9.100-181 standard.  

11) Allow embedded images to be 
extracted

Tiff images are embedded within each record type 52.  
Given the variable length nature of an x9 file, it is difficult 
to isolate and extract the tiff images. 

12) Allow embedded images to be 
manipulated 

It is normally difficult to impossible to manipulate an 
individual image within an x9 file.  

13) Comparison of x9 files X9 files are variable length and contain embedded 
images, which makes obtaining their individual record 
data difficult.  In addition, x9 files are typically encoded in 
the EBCDIC character set, which is foreign to many of the 
data comparison utilities that exist in the server and 
workstation environments.  

14) Create checks to be independently 
created and captured for remote 
deposit or branch capture application 
testing 

Once you solve your x9 testing issues, you must still 
address your remote deposit capture and branch capture 
testing needs.  These applications require paper 
documents and cannot utilize x9 files that you create for 
your image enabled applications.  

These certainly do represent complex problems associated with x9 file testing.  However, the good news 
is that as the x9 industry has matured, there are automated tools that address these specific needs.  If 
you are struggling with these issues then you should research the tools that are now available from a 
variety of software vendors that now exist in this space.  

X9Ware LLC Page 9 of 18



X9Assist

Test CasesTest Cases

Use Cases
A use case scenario describes the usage of an application system by an actor, with the intent of 
accomplishing a specific goal.   The term “actor” represents a user or other object which directly 
interacts with the application system.  In the general sense, actors represent people who interact with 
applications.  In a more specific sense, an actor can be another computer system or an incoming 
transaction type.  Finally, a usage “scenario” is a sequence of steps that describe the interactions 
between an actor and the application system.  
The use case model (UCM) consists of the collection of all actors and all use cases. 
Use cases then: 

 Provide a methodology to engage users in the requirement gathering and definition process 
 Capture the system's functional requirements from a specific actor’s perspective
 Serve as the foundation for developing individual system test cases

Test Cases 

Each Use Case serves as the basis for writing one or more test cases.  Using the Use Case Model, you can 
then create a testing process that is both repeatable and measurable, and will ultimately improve the 
quality of your production application.  

Benefits of this Use Case based testing model is as follows:  

 Traceability ensures that each use case is mapped to one or more test case(s)
 The resulting testing process is measurable  

o Each Test Case can be executed and then documented as pass / fail
o Failed Test Cases can be repetitively tested until passed 

 The resulting testing process is repeatable 
o Individual tests can be applied to the current test cycle
o These tests then become part of a test case repository that can be used in future tests

 The Test Case Repository can be updated and improved over time, as: 
o Undocumented requirements are identified and included in the definition 
o Requirement gaps are closed 
o Functional requirements evolve  
o Application maturity increases

 The Test Case Repository can serve as the basis for automated testing and tracking 

MICR Test Cases  

The following data elements comprise an individual debit or credit MICR item: 
 

 Amount 
 ABA number (including optional ABA check digit) 

X9Ware LLC Page 10 of 18



X9Assist

 Account number
 Process Control field

o Transaction code
o Check serial number

 Auxiliary OnUs 
 Field 4 
 EPC

There are several important items that must be considered and accommodated:

 The  chosen ABA must typically correspond with the assigned account number
 All MICR line fields must individually and collectively be acceptable by the capture logic
 If captured transactions are being passed to downstream applications:

o The account must be defined within the test bed 
o The account must have attributes (status, balance, etc) to support the transaction 
o The transaction code (process control) must be appropriate for the account
o The check serial number (process control or Aux OnUs) must be appropriate for the 

account

Debit Only versus POD Files

In the check processing environment, work can typically be viewed as “debits only” or “POD”.  A POD 
(proof of deposit) environment is defined to process logical transactions, where one or more credits are 
offset by one or more debits.  In a true POD environment, there are validations that are built into the 
processing flow which will ensure that the encoded amounts on each item match the assigned 
processing amount, and that each customer transaction is logically in balance debits to credits.

Your test case repository can be defined with your desired combination of credits and debits, and in the 
order required by your capture application (eg, credits first).  

Summary of Transaction Set Requirements 

At a high level, you should consider the follow requirements for your testing tool:

o Ability to use industry standard tools to define your use cases 
o Ability to provide full MICR line encoding at the field level 
o Ability to control the text that is placed within the drawn images 
o Ability to create debit only cash letter files 
o Ability to create POD cash letter files 
o Ability to support single credit and multi-credit deposits 
o Ability to control how items are bundled into cash letters 

X9Ware LLC Page 11 of 18



X9Assist

X9 Data Creation for Unit TestingX9 Data Creation for Unit Testing  

Creating an x9 file from Randomly Generated Data  

The individual fields that make up a MICR test case can be created using random data generation 
techniques (eg., the use of a random number generator).  This general approach is useful when you want
to generate very large amounts of data with a minimum amount of effort.  However, the use of random 
data is generally insufficient and unacceptable when you need targeted data that will specifically exercise
your documented test cases.  

With that said, random data does not have to be completely “random”.  You can generate random data 
where the contents are much more useful than arbitrarily created random numbers.  

 ABA numbers can be randomly selected from a list of industry defined ABA numbers.  This 
approach will result in a list of random ABA numbers that will self-check and should be 
acceptable to your capture application as well as to your downstream applications.  

 Account numbers can be generated within defined account number ranges and using the 
appropriate self check routines.  The generated account numbers can then be associated with 
the appropriate ABA number.  This approach will result in account number / ABA pairs that can 
approximate the information that may be seen in a production transaction processing 
environment.  

 Amounts can be assigned sequentially within a defined range (for example, each amount 
incremented by one cent).  This approach has several advantages.  First, it improves traceability 
by ensuring that each amount is unique.  Second, it allows large files to be generated within the 
aggregate dollar limits required by x9 files.  

 Sequence numbers can be sequentially assigned, which improves traceability.  

Image Creation 

A key factor associated with the automated creation of x9 data files is the generation of check images 
that logically match the x9 data itself.  When images are drawn to match the generated data, the 
resulting x9 files will have enough validity to be accepted by your x9 image capture applications.  
Dynamically drawn images can utilize check artwork and fonts to create images that are based on the 
randomly created data.  Specifically:

 A handwriting font can be used to place the random amount into the courtesy amount box
 A handwriting font can be used to place the random amount into the legal amount line as text
 A MICR font can be used to format and draw the OCR MICR line per industry standards 

X9Ware LLC Page 12 of 18



X9Assist

Random Data as the Basis for Unit Testing

Are there benefits from testing with randomly generated x9 data?   Absolutely !!

There are various methods to create the new data element that is being assigned:

 Randomly generated
 Assigned randomly from a predefined list
 Sequentially assigned within a defined range
 Calculated based on specific field 
 Intelligently assigned based on the content of other fields which are present 

Using such techniques allows “random” values to be assigned that are appropriate for the targeted field 
and that will pass all of the validations (edits) that are defined at the field level.  

Although random data is quick and easy to create, it is also simplistic in nature and does not ordinarily 
represent the more complex (and accurate) test cases that can typically be defined to be appropriate for 
downstream application testing.    

Use Case Definitions 

Your use case definitions should ideally be defined using an industry tool (such as MS-Excel) that is 
widely used within your organization.  This will allow you to share and distribute the tool to various users
and departments that have x9 testing requirements.  This will allow them to define their testing 
requirements and provide them to a centralized testing group that can organize, facilitate, and execute 
the test.  The following is such an example:

X9Ware LLC Page 13 of 18



X9Assist

However, randomly generated test data can be very appropriate for x9 unit testing.  This is especially 
true if you generate x9 files using a single ABA and with account numbers that are assigned from your 
account ranges and incorporate your self-check routines. 

As an example, you can easily:

 Define one or more ABA numbers to be used for your test cases
 Define your self-check (MOD check) routines
 Generate account number lists for each of the ABA numbers you have defined 
 Combine those generated lists into a single master MICR use case list
 Create several  x9 files containing 10,000 checks each from your randomized use case list

These x9 files can be used by your Unit Testing phase, which brings this critical and frequently used 
testing phase into FFIEC compliance. 

Sanitized Data Used as the Basis for Unit Testing 

An existing x9 file can be used as the basis to create a new x9 file using data “scrub” or “sanitization” 
techniques. 

Creating a sanitized x9 file is a straight forward process that is performed against one of your existing x9 
files.  The resulting x9 file can either preserve or mask the original file and cash letter header attributes.  
You can then decide to retain or scrub as much of the transaction level data as desired to meet your 
specific testing objectives.  

When you sanitize an individual data element, you are replacing its current value with an alternative 
value that will mask its original content.   For example, you can scrub an account number by replacing 
the value “3112578946” with “123456789”.  By doing this, the original customer account number has 
been obliterated and will no longer be assigned to the transaction.  Despite this data replacement and 
confidentiality that has been obtained, much of the intent of the original x9 transaction remains.  

There are numerous benefits obtained by sanitizing existing x9 files to obtain new x9 test files:

 You can quickly create x9 files without the effort of defining individual test cases
 You can select which data elements are to be sanitized (masked) 
 The resulting transactions will exercise either all or a signification percentage of the functionality

of your x9 image based capture application.  
 The resulting transactions can be readily accepted by edits and downstream applications 
 Confidentially of the original transaction improves as the number of scrubbed fields is increased 

Sanitizing just the account number provides a large degree of confidentially for a MICR transaction.  

X9Ware LLC Page 14 of 18



X9Assist

You can build on this logic by also scrubbing the ABA, check serial number, amount, and the tiff image.  
Once all of these fields are scrubbed as a group,  you will have a fully masked transaction which will 
ensure that all customer confidentiality requirements have been met.

Sanitizing x9 Files by Applying Defined Use Cases 

In the real world, MICR line fields cannot be assigned from completely random data.  Very specifically, 

 The account number is logically dependent on the ABA
 The account number must be constructed per OnUs rules 
 The check serial number is logically dependent on the account number 
 The auxiliary OnUs field is logically dependent on the account number  

By sanitizing these fields as a group (by assigning them from your Use Case file), you can ensure that the 
newly assigned values will work together to meet your objectives.  For example:

 Account numbers are valid for the specified ABA
 Account number lengths are appropriate
 Account number check digits are appropriate
 Check serial numbers can be defined as needed (eg, for controlled disbursements or drafts) 

Because of these basic requirements, MICR line fields should be logically sanitized (modified) as a group. 
This data grouping consists of the following MICR line fields:  

 ABA
 Account number 
 Check serial number 
 Auxiliary OnUs

Benefits of Testing with Sanitized Data 

Are there benefits from testing with sanitized x9 data?   The answer is an immediate yes !!   However, the
more complex question is what fields should be replaced by the scrub operation.  At a minimum, the 
following x9 data must have the potential to be sanitized to ensure that customer data is protected: 

 MICR line fields
 Amounts
 Images
 File header ABAs
 Endorsement ABAs

You can then additionally consider sequence numbers, user fields, reserved fields, and various other x9 
data for sanitization based on the above core requirements being met.  

X9Ware LLC Page 15 of 18



X9Assist

When you sanitize at least the MICR line fields and the images, you will generate a new x9 file with all 
customer confidential information obliterated.  

These x9 files can be used by your Unit Testing phase, which brings this critical and frequently used 
testing phase into FFIEC compliance. 

X9Ware LLC Page 16 of 18



X9Assist

SummarySummary

Although the x9.37 related standards have been in use for 10+ years, practitioners of these check image 
exchange specifications must constantly address and adapt to ongoing changes within the industry.  This 
ongoing change includes the need to strengthen our testing procedures to minimize the use of 
production data within these environments.  This need is mandated by internal and external audit 
requirements and is a necessity to protect the confidentiality of customer data.  

Within the problem statement of this white paper, it was stated that a fully functional X9 data generation
tool must support the following functions:

 Creation of x9 files (data and images) from use case definitions
 Ability to build a repository of test cases which can be used for regression testing
 Ability to sanitize production files to easily create representative test files
 Ability to create high volume stress files from sanitized production data 

Software tools do exist that address the above stated requirements.  Use of these types of tools can not 
only increase your productivity but also ensure that data privacy requirements are met.  Moving towards
an x9 test case repository will help test teams improve the repeatability measures associated with their 
applications, improve the reliability of those systems, and move to higher levels within the Capability 
Maturity Model.  

X9Ware LLC Page 17 of 18



X9Assist

Appendix:  X9Assist as a Testing ToolAppendix:  X9Assist as a Testing Tool  

About X9Ware LLC

X9Ware LLC provides extensive tools for users of the various x9.37 file specifications. Our product line 
extends from a free x9 viewer to tools that include validate, modify,  repair, make, generate, scrub, 
import, export, and provide a host of other x9 support and reporting functions.  We have price 
competitive licensing options to meet the needs of any size organization.  Our goal is to offer what we 
believe are some of the best tools in the industry and at the lowest possible cost. 

X9Assist is our flagship product which incorporates a series of tools to support your x9 production 
support, testing, and development requirements.  Specific examples are:  

Tool Usage
1) Make Creates a new x9 file from a use case file which can be defined in 

either Excel or CSV format.  A variety of fields can be provided via 
the use case file.  Fields that are not present in the use case file 
can be assigned constant or random data based on your specific 
requirements.  

2) Generate Creates a new x9 file from a CSV file which can be obtained from 
various sources.  The most typical usage of Generate is as the 
second step of the Make process (where the output from Make is 
the input to Generate).  

3) Scrub Obliterates fields within an existing x9 file by replacing values in 
selected fields with either random or use case data.  The x9 data 
elements that can be altered include MICR line fields, amounts, 
item sequence numbers, endorsements, and file header records.  
Scrub also redraws images associated with an altered check after 
the new MICR fields are assigned, thus allowing the x9 data and 
the image to remain synchronized.  

4) Clone Clones bundles within existing cash letters to create large x9 files 
for performance and stress test purposes.  

5) Merge Merges cash letters from multiple independent files into a single, 
consolidated x9 file that can be used for testing purposes.  

 

For additional information on the capabilities of X9Assist, please contact lowell.huff@x9ware.com, or 
visit our website at www.x9ware.com. 

X9Ware LLC Page 18 of 18

http://www.x9ware.com/
mailto:lowell.huff@x9ware.com

