
X9Ware SDK User Guide X9Ware LLC

X9Ware-SDK
User Guide

X9Ware SDK

 Your x9.37+ACH+CPA005 support tools

Revision Date: 04/18/2024
Release R5.04

Copyright 2012 – 2024 X9Ware LLC
All enclosed information is proprietary to X9Ware LLC

X9Ware LLC
10753 Indian Head Industrial Blvd

St Louis, Missouri 63132-1101
(844) 937-1850

Email support@x9ware.com

Page 1 of 166

mailto:support@x9ware.com

X9Ware SDK User Guide X9Ware LLC

Table of Contents
Overview..5
Upgrading from a Previous X9Ware-SDK Release...8

X9Ware-SDK Upgrade Considerations...8

X9Ware-SDK Resources...9

Code Upgrade Patterns..9

Try-With-Resources..19

Installation Tasks..20
JAR Requirements and ClassPath..21
SLF4J Logging...22

Logging Frameworks..22

X9SdkLogger..23

Linux Considerations...24
AWS Cloud Considerations...25
Submitting Problem Reports..26
Runtime Resources..27

Runtime Folders..27

System Folders...29
Logging During Startup...29

Explicitly Setting the System Folders...29

Explicit Assignment of the Launch Folder..30

Explicit Assignment of the Work Folder...30

Explicit Assignment of the Home Folder..30

X9Ware-SDK Fundamentals..31
X9Ware-SDK Initialization..33

License Keys...33

Sample Startup Code...33

Bind Configurations..34

X9.37 Configurations..35

ACH Configurations..35

X9Ware-SDK Shutdown..36
X9Ware-SDK Includes X9Utilities..37
Using X9Objects..41
Retrieving Fields within X9 Records...43
Modifying Fields within X9 Records...45
Credits And Trailer Totals..47
Using X9Writer..49
X9Ware-SDK Code Examples...50
Rules Overview..56

Page 2 of 166

X9Ware SDK User Guide X9Ware LLC

X9 Configurations..58
X9 Rules...61

X9 Rules – Base Specification Example...62

X9 Rules – Extension Specification Example...65

X9 Rules – X9Controls...70

X9 Rules – Basis...78

X9 Rules – X9Record..81

X9 Rules – Field..84

X9 Rules – Local Edits..88

X9 Rules – Cross Field Edits..89

X9 Rules – Date Range Validations..91

X9 Rules – Tables..91

X9 Rules – Tests..92

X9 Rules – POD Credit Tables..98

TIFF Rules...100
TIFF Rules – TIFF Controls..101

TIFF Rules – TIFF Edits...104

TIFF Rules – Mandatory TIFF Tags..106

TIFF Rules – TIFF Tag Descriptions..107

Gray Scale Image Support...108
X9 Messages..113

Message XML...113

System Messages...115

Override Messages..115

Full / Sparse / Plain..115

Message Patterns...116

Message Files in JAR versus File System...117

Message Pattern Reuse..117

Message Configurations..118

Using the Message and Configuration Editors..118

Using the X9Ware-SDK API to Insert Message Overrides...119

Using the X9Ware-SDK API to Insert Message Overrides from XML..120

Bitonal Image Thresholding...122
Bitonal Image Challenges...122

Bitonal Thresholding Techniques..122

MICR Line Format and Standards...126
MICR Line Standards..126

MICR Line Parsing...127

Page 3 of 166

X9Ware SDK User Guide X9Ware LLC

MICR Line Characters..127

MICR Line Fields..127

MICR Line Layout..128

MICR Line RegEx...129

Appendix: HeaderXml...132
Editing HeaderXml..132

HeaderXml as Written to the Log..133

X9 File Structure...134

Inclusion of Credits in Trailer Totals...134

HeaderXml Fields defined within the <info> group...134

HeaderXml Fields defined within the <fields> group...135

Appendix: X9 Record Types..153
Type 25 Check Detail Record..153

Type 26 Check Detail Addendum A Record..154

Type 27 Check Detail Addendum B Record...155

Type 28 Check Detail Addendum C Record...156

Type 31 Return Record..157

Type 32 Return Addendum A Record..159

Type 33 Return Addendum B Record...161

Type 34 Return Addendum C Record...161

Type 35 Return Addendum D Record...162

Type 61 Format (001) “Metavante”..163

Type 61 Format (002) “DSTU”...164

Type 61 Format (003) “x9.100-180”...165

Type 62 Format (000) “x9.100-187-2013”..166

Page 4 of 166

X9Utilities User Guide X9Ware LLC

OverviewOverview

The X9Ware-SDK is a full function Software Developer Kit (SDK) for Java programmers. It
provides a wide of functions that are needed in support of X9.37, ACH, or CPA005 application
development. Our design is to implement these various file formats (which we refer to as dialects)
from a single SDK using a common API. Our goal has been to make this extensible to other
dialects in the future, to allow our SDK to continue to meet the needs of the financial industry. The
X9Ware-SDK is used extensively as the basis for all internally developed X9Ware products, and
can similarly be used as the basis for your development work.

The X9Ware-SDK is 100% Java with minimal open source JARs. This simplifies our environment
and reduces our software footprint. The X9Ware-SDK has a baseline requirement of JDK 1.8 on
our desire to move to various functionality that was added in that release level including Lambda
support.

We believe that the X9Ware-SDK has excellent capabilities and performance, when compared to
any other tool you will find within the industry. Our validation engine (which supports both x9 and
ach file formats) and associated rules are built into the X9Ware-SDK and can be leveraged by user
implementations. The X9Ware-SDK contains many ancillary and advanced x9 functions for the
developer such as TIFF image draw and IRD creation. The X9Ware-SDK is a proven product with
customer implementations in Windows, Linux, and AIX. We have customer implementations using
the Oracle JDK, various Open JDKs, as well as more complex environments such as Apache
Tomcat, Spring, and WebSphere. The X9Ware-SDK supports full multi-threaded processing within
a server environment.

The X9Ware-SDK allows inputs and outputs to be processed as files or streams (note that
X9Utilities supports files only). This means that your application can have an x9.37 input file
which can be easily exported to a CSV stream. Just as easily, your application can be completely
stream based, without anything written to the file system. This is especially beneficial when
running an application in the cloud (eg, within a docker container). The X9Ware-SDK has is fully
self defined with all resource files embedded as internally defined resources. This implementation
means that we have no dependencies on external files or folders. These resources include our
internally defined components such as x9 rules, tiff rules, messages, packaged images, etc. Our
technical design allows you to define these resources in external folders to override our JAR
definition or add your own components as needed.

The X9Ware-SDK uses SLF4J to provide logging flexibility. An implementation is provided that is
based on use of the JDK logger that can be replaced with LOG4J.

The X9Ware-SDK has been an evolving process and continues to be enhanced as we add new
functions to our x9 tools. The philosophy at X9Ware has been to implement all primary x9
functions within the X9Ware-SDK and to then expose that functionality directly to our user base
through our user base using such tools as X9Assist and X9Utilities. With this approach, you can
essentially use the X9Ware-SDK to do the wide array of functions that are implemented in

Page 5 of 166

X9Utilities User Guide X9Ware LLC

X9Assist. For example, with the X9Ware-SDK you can: read, write, extract, and summary the
content of input files; validate data and images; extract data and images; repair TIFF images; use
templates to draw test items; draw image replacement documents (IRDs); and so forth.

The X9Ware-SDK is an evolving process and continues to be enhanced as we add new functions to
our x9+ach tools. The philosophy at X9Ware has been to implement all primary functions within
the X9Ware-SDK and to then expose and present that functionality using such tools as X9Assist
and X9Utilities. With this approach, you can essentially use the X9Ware-SDK to perform a wide
array of functions that are demonstrated in X9Assist. Our x9 rules engine is implemented within
the X9Ware-SDK, which means that you can use it to both validate and create x9 files using any of
our defined x9 rules configurations. You can also create your own customized x9 rules which will
allow you to validate x9 files against your own x9 variants.

The X9Ware-SDK is not an afterthought. It is used internally by X9Assist to perform virtually all
x9 related I/O functions. Most of the X9Assist tools are built into the X9Ware-SDK itself, so they
are available to our SDK users. For example, x9 file validation and tiff image repair are complex
functions that are available from the X9Ware-SDK. Consistent use of the X9Ware-SDK within
X9Assist simplified the development of our product and we know that it can do the same for you.
The X9Ware-SDK is also not a static product. Our philosophy of building upon the X9Ware-SDK
will continue. This product will be expanded and improved as future X9Assist enhancements are
implemented.

Our SDK includes Java classes that map the logical fields that exist within that x9 record type.
This field level interface allows your application to work at the field level for both read and write
(modify) operations. This field level interface also exists for the type 31 credit reconciliation
record and is implemented in a manner that supports custom type 31 record formats per your own
definition.

Examples of functions that can be performed by the X9Ware-SDK:

• Read/Write x9+ach files at both the record and field level
• Full multi-thread support to process multiple files concurrently
• Parse of input files (x9+ach)into record level objects that can be searched and modified
• File validation (x9+ach) at the record and image level
• X9 TIFF validation and repair
• Image rescaling and conversion
• Check and IRD image drawing
• Paid stamp for overlay onto back side check images
• Access individual images on both input and output
• Dynamically draw images to create x9 data for test systems (similar to Make)
• Dynamically draw IRDs (image replacement documents) including the endorsement chain

and return reason
• File import/export to and from csv files
• Make/Generate/Scrub/Merge and other tools

Page 6 of 166

X9Utilities User Guide X9Ware LLC

• Extensive logging based on SLF4J (Simple Logging Facade) which is pluggable for log4j,
logback, etc

• And other similar low level functions

The X9Ware-SDK has advantages over similar products offered by other vendors

• More functionality
• No timeouts or expiration dates built into the product
• No CPU or server level registration is required
• Once licensed, ongoing usage is based on maintenance renewals; we do not want your

production applications aborting due to license key issues

Page 7 of 166

X9Utilities User Guide X9Ware LLC

Upgrading from a Previous X9Ware-SDK ReleaseUpgrading from a Previous X9Ware-SDK Release

The process of upgrading from an older X9Ware-SDK release to the most current release is
normally very straight forward. We recommend that you incorporate the following steps in your
plan:

X9Ware-SDK Upgrade Considerations

Important upgrade considerations are as follows:

• Consult with X9Ware to finalize the decision as to which X9Ware-SDK release you will
install based on your project requirements and time line. In most situations, you will want
to install the most recent “final” release of the X9Ware-SDK, which is a production release
with general availability. However, dependent on your specific needs, you may also want to
consider a “candidate” release which is under develop and will be released soon. This that
be an advantageous decision if you either require capabilities that may only in that latest
release, or if you require an enhancement that would be added explicitly by X9Ware as part
of your project.

• Obtain the selected X9Ware-SDK build from X9Ware. If you have elected to use a
candidate build, then add a task to your project plan to move to the final build of the chosen
X9Ware-SDK release before you move to a product status.

• Review the JavaDoc for the current X9Ware-SDK release and especially in areas that are
most used by your user applications. X9Ware has worked to minimize the API changes that
we make to our X9Ware-SDK from release to release, but these will always exist. The
potential for API differences will increase depending on the number of “skipped” X9Ware-
SDK releases that are involved in your upgrade. The differences will be readily identifiable
since your application program will get compiler syntax errors in those areas where there
are API changes. It is then very important that you review the JavaDoc in the areas where
you have API issues so you fully understand the new X9Ware-SDK capabilities in those
functional areas where we have made changes. You can also review our current X9Ware-
SDK Examples (which you can download from our website) and especially when you have
used our examples as the basis for your development. Our examples will always be brought
forward based on the current X9Ware-SDK API.

• Finalize a regression test plan. Regression testing should always consist of running your
data through the “old” and “new” application environments. This testing must include
automated file comparisons of the output files that are created since manual reviews are
difficult and only scratch the surface of your program outputs. Output x9.37 files can be
compared on an automated basis using tools such as X9Assist and HxD. Output CSV and
image folders can be compared using tools such as WinMerge. Always include automated
regression testing in your project plans.

Page 8 of 166

X9Utilities User Guide X9Ware LLC

X9Ware-SDK Resources

The various X9Ware-SDK resource files were stored externally for X9Ware-SDK release R3.03
and earlier. These resources include such files as Brand, Doc, Fonts, Images, Rules, and Xml. With
our R3.04 release, these files have been moved to be internal to the X9Ware-SDK and no longer
need to be defined and referenced in your file system at run time. This enhancement simplifies
your JVM environment since these resource files no longer need to be pre-populated there and then
included in your environment setups, backups, etc.

If you are moving from X9Ware-SDK R3.03 (or earlier) then you will want to remove these
resource files from the new JVM/X9Ware-SDK environment you are building, since they are now
embedded within the JAR. You can also remove your “launch folder” assignment process since
that is similarly no longer required.

Code Upgrade Patterns

This is not a complete list since many small changes are made to our API that should be obvious
from the current JavaDoc and our current X9Ware-SDK examples. Please work with us directly for
any code changes that are problematic when upgrading from one release to another. We understand
that this can become a challenge, and especially when numerous releases are being skipped as part
of the upgrade. Your suggestions for this list are appreciated.

Release Functional Change New Code Patterns

R3.06 A new X9Factory class was
created to simplify the process of
creating x9 files on a field by field
basis and as part of our x9.100-
180 support. X9Factory will only
attempt to populate those fields
which actually exist in the current
x9 standard.

See X9BuildX9 for complete examples as to how to use the
new X9Factory class.

R3.06 X9SdkIO method renamed from
writeFromCsvArray to writeFrom
Array.

sdkIO.writeFromArray(sdkObject, csvArray);

R3.06 X9SdkIO method renamed from
startNewCsvOutputRecord to
startNewCsvRecord.

sdkIO.startNewCsvRecord(recordType, recordFormat);

R3.06 X9ImportIE has been converted to
a static class.

X9ImageResults results =
X9ImageIE.importImageToTiff(sdkBase, imageFile);
byte[] byteArray = results.getByteArray();

R3.06 X9ImageIE method importImage
expanded into two separate
methods: importImageToTiff and
importImageToTiffWithRepair.

These methods load an image from an external file and provide
the results as a TIFF byte array. If the image is in another
format (PNG, JPG, etc) then it is converted from that format to
TIFF.

R3.06 X9ImageIE method
getBufferedImage expanded to
include new method
getBufferedImageWithRepair.

These methods load an image from an external file and provide
the results as a BufferedImage. If the image is in another format
(PNG, JPG, etc) then it is converted from that format to TIFF.

Page 9 of 166

X9Utilities User Guide X9Ware LLC

Release Functional Change New Code Patterns

R3.06 X9TiffRepair has been converted
to a static class.

X9ImageResults results = X9ImageIE.importImage(sdkBase,
imageFile);
BufferedImage bi = results.getmage();

R3.06 X9FileIO can be used to write a
byte array directly to an output file.

X9FileIO.writeToFile(byteArray, imageFile);

R3.06 X9SdkIO requires that images be
attached to the X9SdkObject when
using the write X9 from CSV
functionality. See the current
X9BuildX9 as an example.

When building your x9 file on a field by field basis.

final byte[] imageByteArray =
X9ImageLoader.getImageByteArray(imageFile);
sdkObject.setCheckImage(tiffImage);
sdkIO.addField(imageByteArray.length); // 52.18
sdkIO.addField(“”); // 52.19

or when building your x9 file using X9Factory and constructing
the entire csv as an array:

sdkObject.setCheckImage(tiffImage);
sdkIO.writeFromArray(sdkObject, csv);

R3.06 X9DrawTextLine renamed to
X9TextLine.

textList.add(new X9TextLine("For Deposit Only", fontA30));

R3.06 X9AmountToWords changed to a
static class.

final String amountString =
X9AmountToWords.translateToWords(itemAmount);

R3.06 X9ImageLoader eliminated and
replaced with X9FileIO.

final byte[] byteArray = X9FileIO.readFile(imageFile);

R3.07 X9AmountToWord line splitter
moved to a new static class.

final List<String> amountList = X9LineSplitter.split(g2d,
amountString, fieldSize,
X9DrawItemFront.MINIMUM_WORDS_ON_FIRST_AMOUNT_
LINE);

R3.07 The new “sequential” edit rule
replaces our previous rules
R26sequence, R28sequence,
R32sequence, and R35sequence.
The sequential edit rule validates
that a field value when appearing
in adjacent records of the same x9
record type. The edit validates that
the value begins with one and is
then incremented by one.

<field> <item>x26.02-p003-l001-mandatory-modifiable</item>
 <edit>n</edit>
 <edit>sequential</edit>
 <name>Check Detail Addendum A Record Number</name>
</field>

R3.07 X9CsvReader no longer supports
the skip header lines option since
there are no absolute standards for
their layout and they cannot be
consistently identified.

If you know your CSV file contains a header attribute row, you
can either write your own code to skip over that leading row or
you can use the skip rows method to bypass that leading row.

R3.07 X9CsvReader and X9CsvWriter
have been rewritten with numerous
enhancements while remaining
compatible with their previous
functionality. These classes now

The CSV line buffer size is now determined internally. This has
allowed us to eliminate the buffer size parameter within both
X9SdkBase and the properties file. The X9CsvReader and
X9CsvWriter constructors have been updated to longer require
X9SdkBase since it was needed only to access the buffer size.

Page 10 of 166

X9Utilities User Guide X9Ware LLC

Release Functional Change New Code Patterns

implement Closeable which allow
them to take advantage of Java 1.7
try with resources.

X9CsvReader and X9CsvWriter are enhanced to support
streams which provides more flexibility.

R3.07 X9JdkLogger close is deprecated
and replaced with the new
closeLog() method. This change
was made since our direction is for
all close() methods to implement
Closeable and this was not the
case for X9JdkLogger close().

X9JdkLogger.closeLog();

R3.07 X9TiffWriter has been changed to
a static class to simplify usage.

final byte[] tiffByteArray = X9TiffWriter.createTiff(bw, imageDpi);

R3.07 X9ImageReader method
readByteArray has been renamed
to getImage.

final byte[] imageBuffer = x9imageReader.getImage(t52);

R3.07 X9GenerateFile method
generateFile() now returns an error
message (on failure) or null (on
success).

final String generateErrorMessage =
x9generateFile.generateFile();

R3.08 X9Object method
isImageReplaced has been
renamed to
hasDirectlyAttachedImage.

If (x9o.hasDirectlyAttachedImage())

R3.08 X9Object method
setReplacementImage has been
renamed to
setDirectlyAttachedImage.

x9o.setDirectlyAttachedImage(tiffArray);

R3.08 X9Object method
getReplacementImage renamed to
getDirectlyAttachedImage.

final byte[] tiffArray = x9o.getDirectlyAttachedImage();

R3.08 X9Reader has been renamed to
X9Reader937.

final X937Reader x9reader937 = new X937Reader(sdkBase,
x9streamReader);

R3.08 X9Reader937 method
getX9DataLength has been
renamed to getDataLength.

final int dataLength = x9reader937.getDataLength();

R3.08 X9Reader937 method
getX9RecordType has been
renamed to getRecordType.

final int recordType = x9reader937.getRecordType();

R3.08 X9SdkIO method getX9Reader
has been renamed to
getReader937.

final long fileLength = sdkIO.getReader937().getFileSize();

R3.09 JVM requirement upgraded from
JRE 1.8 to JRE 1.9.

Page 11 of 166

X9Utilities User Guide X9Ware LLC

Release Functional Change New Code Patterns

R3.09 X9SdkIOW has been removed (it
was added with R3.07) with
X9SdkIO itself now implementing
Closeable.

try (final X9SdkIO sdkIO = sdk.getSdkIO()) {

R3.09 Class X9TrailerManager has been
renamed to X9TrailerManager937,
to be aligned with the new
X9TrailerManagerAch.

X9TrailerManager is now an interface definition which is shared
by x937 and ach. Example as follows:

final X9TrailerManager x9trailerManager = new
X9TrailerManager937(sdkBase);

R3.09 X9TrailerManager937 method
getBundleTotals has been
renamed to getBatchTotals to
better describe the shared usage
between x937 and ach.

final X9TrailerTotals totals = x9trailerManager.getBatchTotals();

R3.09 Field edit rule “Dateyyyymmdd”
renamed to “yyyymmdd”.

Change to be applied to appropriate x9 xml rules. Backward
compatibility to old name is maintained.

R3.09 Field edit rule “Timehhmmss”
renamed to “hhmmss”.

Change to be applied to appropriate x9 xml rules. Backward
compatibility to old name is maintained.

R3.09 Field edit rule “Timehhmm”
renamed to “hhmm”.

Change to be applied to appropriate x9 xml rules. Backward
compatibility to old name is maintained.

R3.09 X9Validator constructor changed to
accept file attributes as new class
X9FileAttr and not the x9 reader.

final X9Validator x9validator = new X9Validator(sdkBase,
sdkIO.getReader937().getFileAttributes());

R3.09 X9SdkIO has certain methods
renamed to have a more generic
name as part of our ACH
implementation. This makes their
method name apply equally well to
x9 as well as to ach.

makeCsvFromX9 renamed to makeCsvFromInputRecord.

getCsvFromX9 renamed to getCsvFromX9Object.

makeX9FromCsv renamed to makeOutputRecordFromCsv.

makeX9FromX9Object renamed to makeOutputRecord.

makeX9FromSdkObject renamed to makeOutputRecord.

createX9RecordFromCsvArray renamed to
createOutputRecordFromCsvArray.

readX9 renamed to readInputFile.

writeX9 renamed to writeOutputFile.

openX9InputFile renamed to openInputFile.

openX9InputFileImageReader renamed to openImageReader.

openX9OutputStream renamed to openOutputStream.

openX9OutputFile renamed to openOutputFile.

isX9OutputStreamOpen renamed to isOutputStreamOpen.

Page 12 of 166

X9Utilities User Guide X9Ware LLC

Release Functional Change New Code Patterns

closeX9InputFile renamed to closeInputFile.

closeX9OutputFile renamed to closeOutputFile.

closeX9ImageReader renamed to closeImageReader.

R3.09 X9SdkObject has certain methods
renamed to have a more generic
name as part of our ACH
implementation. This makes their
method name apply equally well to
x9 as well as to ach.

getX9Data() renamed to getDataByteArray().

getX9DataLength() renamed to getDataByteArrayLength().

setX9Data() renamed to setDataByteArray().

getX9AsciiRecord() to getAsciiRecord().

getX9OutputRecord() renamed to getOutputRecord().

getX9OutputRecordLength() renamed to
getOutputRecordlength().

buildX9FromData() renamed to buildOutputFromData().

buildX9FromImage() renamed to buildOutputFromImage().

buildX9FromDataAndImage() renamed to
buildOutputFromDataAndImage().

buildX9() renamed to buildOutput().

R3.09 X9ImageReader renamed to
X9RandomReader for clarity since
it is used for a variety of random
read purposes.

final X9RandomReader x9randomReader = new
X9RandomReader();

R3.09 X9SdkBase method
getImageReader() renamed to
getRandomReader().

final X9RandomReader x9randomReader =
sdkBase.getRandomReader();

R3.09 X9Generate937 and
X9GenerateXml have changes
which eliminate the xml fields that
were associated with creation of
invalid image scenarios. These
were fields itemsPerTestCase and
imageTests (which was a boolean
character string which indicated
the tests to be created.

This previous implementation was difficult to use and was
highly dependent on the indexes of each invalid image scenario
and hence was also release dependent, since that those
indexes could change from release to release. This was
resolved with a new X9GenerateColumns field
“invalidImageScenario” which is now specified at the item level
and can be used to explicitly identify the invalid image scenario
to be applied to each item as appropriate. This new design
allows image test cases to be assigned on an item by item
basis as needed and eliminates the index dependency.

R3.09 Set launch folder moved from
X9Properties to X9LaunchFolder.

X9LaunchFolder.setFolder(launchFolder);

R3.09 Set home folder moved from
X9Properties to X9HomeFolder.

X9HomeFolder.setFolder(homeFolder);

R3.10 X9Util renamed to X9UtilMain as X9UtilMain implements closeable so it can be invoked using try

Page 13 of 166

X9Utilities User Guide X9Ware LLC

Release Functional Change New Code Patterns

part of our separate new batch
functions such as X9Export,
X9Merge, etc, and in conjunction
with the new abstract class
X9UtilBatch. The new X9UtilMain
also allows utility functions to be
invoked by SDK applications and
facilities the ability to not issue
system exit.

with resources to ensure closed. Example is as follows:

int exitStatus = EXIT_STATUS_ABORTED;
try (final X9UtilMain x9utilMain = new X9UtilMain()) {

exitStatus = x9utilMain.launch(args);
} catch (final Throwable t) {

LOGGER.error("throwable exception", t);
} finally {

System.exit(exitStatus);
}

R3.10 X9Item renamed to X9Item937
with the addition of ACH support
and the new X9ItemAch.

final X9Item937 x9item = new X9Item937(recordNumber,
recordType, routing, onus, auxOnus, epc,
X9Decimal.getAsAmount(amount), isn);

R3.10 X9CsvReader method
getStringArray has been renamed
to getNextIncomingStringArray
since that name is a better
description of the function
performed.

/*
 * Call the csv reader to get the next csv input line.
 */
final String[] csvArray =
getOpenedCsvReader().getNextIncomingStringArray();

R3.10 X9MicrOnUs (which parses the
MICR OnUs string into component
parts) has been changed to be an
immutable class. The parse
function has been moved into the
constructor and a new getError()
method is used to retrieve the
validation status.

final X9MicrOnUs x9micrOnUs = new X9MicrOnUs(sdkBase,
x9o.getMicrOnUs());

final X9Error x9error = x9micrOnUs.getError();
final String account = x9micrOnUs.getAccount();
final String pc = x9micrOnUs.getProcessControl();

R3.10 X9HeaderXml renamed to
X9HeaderXml937.

private final X9HeaderXml937 x9headerXml937 = new
X9HeaderXml937();

R3.12 X9MicrOnUs no longer requires
“sdkBase” in the constructor. This
reference is now only required
when you specifically invoke the
getError method.

final X9MicrOnUs x9micrOnUs = new X9MicrOnUs(micrOnUs);

x9error = x9micrOnUs.getError(sdkBase);

R3.12 Static class X9RoutingValidate has
been renamed to
X9ValidateRouting as part of
standardization.

final X9ModCheck x9modcheck =
X9ValidateRouting.getModCheckInstance();

R3.12 The detailed xml files that exist
within X9HeaderXml937 have
been moved to an xml bean with
associated attributes, which can be
obtained using a getter method
from X9HeaderXml937.

final X9HeaderXml937 x9headerXml937 = new
X9HeaderXml937();

x9headerXml937.readHeaderDefinition(headerXmlFile);

final X9HeaderAttr937 headerAttr = x9headerXml937.getAttr();

R3.12 The detailed xml files that exist
within X9ScrubXml937 have been
moved to an xml bean with
associated attributes, which can be
obtained using a getter method

final X9ScrubXml x9scrubXml = new X9ScrubXml();

x9scrubXml.loadScrubConfiguration(scrubXmlFile);

final X9ScrubAttr scrubAttr = x9scrubXml.getAttr();

Page 14 of 166

X9Utilities User Guide X9Ware LLC

Release Functional Change New Code Patterns

from X9ScrubXml937.

R4.01 X9Object method getAmount()
renamed to getRecordAmount().

This method now returns the specific amount that is set within
this x9object.

R4.01 X9Object method
getAmountAsLong() renamed to
getRecordAmountAsLong().

This method now returns the specific amount that is set within
this x9object.

R4.01 X9Object method setAmount()
renamed to
setRecordAmountAsLong().

x9o.setRecordAmount(BigDecimal.ZERO);

R4.01 X9SdkIO method readInputFile)_
renamed to readNext(), which is a
better description, since it can
process either files or streams.

sdkObject = sdkIO.readNext();

R4.01 X9SdkBase no longer extends
X9SdkRecords. This change is
part of our longer term SDK
changes to isolate x9 specific
definitions and make the SDK itself
more generic. Elimination of
X9SdkRecords generally has little
to no impact to SDK based
applications. It does mean that an
x9 record field number must now
be referenced through the new
X9RecordFields class, instead of
through the x9 field numbers that
were generally available through
the current X9SdkBase instance.

For example, this usage pattern has been eliminated.

final int r52ImageDataFieldNumber = sdkBase.r52ImageData;

Is now replaced by:

final X9RecordFields x9recordFields =
sdkBase.getRecordFields();
final int r52ImageDataFieldNumber =
x9recordFields.r52ImageData;

R4.01 X9Object has two methods that
can be very helpful when querying
against the record number that is
instantiated by the referenced
x9object.

An example of querying if the record number is equal to:

final boolean isImageRecord =
x9o.isRecordType(X9.IMAGE_VIEW_DATA);

An example of querying if the record number is not equal to:

final boolean isNotImageRecord =
x9o.isNotRecordType(X9.IMAGE_VIEW_DATA);

R4.01 X9StreamReader has been
redesigned and replaces with
X9FileReaderChannel and
X9FileReaderStream, both of
which implement X9FileReader.

try (X9FileReader x9fileReader =
X9Reader.getNewReader(inputFile)) { }

R4.01 X9Field method getFieldNumber()
renamed to getFieldIndex() to be
more descriptive, since the
returned value is zero based.

final int fieldIndex = x9field.getFieldIndex();

R4.04 Common tools within the SDK
were moved to a separate Java
project, which was needed to

An example is X9Exception, which has moved from package
com.x9ware.core to com.x9ware.actions.

Page 15 of 166

X9Utilities User Guide X9Ware LLC

Release Functional Change New Code Patterns

support our creation of E13B-OCR
as a separate product. This
resulted in a small number of
package name changes.

These moves did not change the class APIs in any way. They
were needed to ensure that we maintain unique package
names across all of our internal Java projects.

R4.04 The SDK now includes a static
license key which must be set as
part of initialization. This license
includes company name, client
name, and expiration date.

The license key is static and as such will typically never be
changed. Our design is to incorporate the license key directly
into the SDK application code itself. This approach ensures that
the key is always present.

R4.05 X9SdkBase methods
getImageMode() and
setImageMode() have been
eliminated. They are replace with
an X9ImageMode parameter that
has been added to several
methods, which allow the value to
be explicitly provided when
needed.

while ((sdkObject =
sdkIO.getNextCsvInputRecord(imageMode)) != null) {
…
}

R4.05 The SDK has eliminated several
X9ImageMode enum values that
were used to indicate relative
versus absolute image file names
when x9.37 files were exported to
CSV. These enums were replaced
with a sdkIO setting that is
assigned true when the generated
image file names should be
relative and false when absolute
(the default action).

/*
 * Set image export option as either relative or absolute.
 */
sdkIO.setExportedFileNamesRelative(isImageExportRelative);

R4.05 X9CsvWriter has method
addFieldExplicitly rename to
adFieldAsTrimmed, which is a
better description of the
functionality.

for (final String csvValue : csvArray) {
 csvWriter.addFieldAsTrimmed(csvValue);
}

R4.06 X9ExportFile constructor has been
simplified for the typical case when
there is only being one file
exported. Setters are provided
when X9ExportFile is being used
for multiple files.

final X9ExportFile x9exportFile = new X9ExportFile(sdk,
outputFile, x9exporter);

x9exportFile.setTotalFileCount(inputFiles.size());

x9exportFile.setTotalFileByteCount(totalByteCount);

R4.06 X9ExportResults was renamed to
X9ExportTotals as a better
description of the functionality. The
accumulators were only partially
populated in earlier releases. They
are now being more fully populated
with totals being accumulated by
X9TrailerManager.

final X9DecimalFormatter x9d = new X9DecimalFormatter();
String exportSummary = "file(" + inputFile + ") recordCount("

+
x9d.formatLong(x9exportTotals.inputCount) + ") debits("
+ x9d.formatLong(x9exportTotals.debitCount) + ") amount("
+ x9d.formatDollarAmount(x9exportTotals.debitAmount) + ")";

R4.06 All method and attributes changed
from gender to dialect.

if (sdkBase.isDialectX9()) {
}

Page 16 of 166

X9Utilities User Guide X9Ware LLC

Release Functional Change New Code Patterns

R4.06 X9SdkIO method openInputStream
has been renamed to
openInputReader, as part of the
implementation of mixed file and
stream support in SdkIO.

sdkIO.openInputReader(X9FileReader.getNewReader(inputStre
am));

R4.06 X9Writer method openAndBind
has been renamed to
bindAndOpenFile(), as part of our
stream support enhancements.

x9writer.bindAndOpenToFile(x9outputFile, x9headerXml937);

R4.06 X9FileReader method
getNewReader has been renamed
to getNewChannelReader as part
of our stream implementation.

try (X9FileReader x9fileReader =
X9FileReader.getNewChannelReader(inputFile)) {
}

R4.06 X9FileReader method
getNewReader has been renamed
to getNewStreamReader as part of
our stream implementation.

try (final X9FileReader x9fileReader =
X9FileReader.getNewStreamReader(inputStream)) {
}

R4.08 Various methods have a new
X9Dialect enum provided as a
parameter instead of that same
value in string form. An example is
X9SdkFactory get().

sdk = X9SdkFactory.getSdk(sdkBase, X9Dialect.X9);

R4.08 Various methods have a new
X9Dialect enum provided as a
parameter instead of that same
value in string form. An example is
X9DialectFactory.getNewReader().

final X9Reader x9reader =
X9DialectFactory.getNewReader(sdkBase, X9Dialect.X9,
x9fileReader, X9Reader.MAILBOX_NOT_ACCEPTED)) {

R4.08 Various methods have a new
X9Dialect enum provided as a
parameter instead of that same
value in string form. An example is
X9ConfigManager.getConfigList().

final String[] configurationList =
X9ConfigManager.getConfigList(X9Dialect.X9);

R4.08 X9ImageResults moved from
com.x9ware.imaging to
com.x9ware.imageio.

import com.x9ware.imageio.X9ImageResults;

R4.08 X9MessageManager moved from
com.x9ware.messaging to
com.x9ware.base.

import com.x9ware.base.X9MessageManager;

R4.08 Various messaging constants
moved from X9MesageManager to
X9Message.

X9Message.ESEPARATOR, X9Message.PREFIX,
X9Message.LINE_NUMBER, etc.

R4.08 Method createBlankImage moved
from X9DrawTools to
X9BitonalImage.

final X9BitonalImage bw =
X9BitonalImage.createBlankImage(w, h);

R4.09 The font sizes passed to
X9DrawTools
drawPaidEndorsementStamp were
not properly sized, subject to the

The result is that smaller (and more logical) font size definitions
must be provided to X9DrawTools
drawPaidEndorsementStamp. More typically, these sizes will
now be more like 10, 12, 14, etc. The previous sizes were

Page 17 of 166

X9Utilities User Guide X9Ware LLC

Release Functional Change New Code Patterns

target image DPI. incorrect and much larger.

R4.11 The static method used to create
new image folders within the file
system, as part of export with
images, was moved from
X9SdkObject to new class
X9SdkImageBundle.

lastBundleFolderWritten =
X9SdkImageBundle.createNewBundleFolderWhenNeeded(ima
geFolder, relativeFileName, lastBundleFolderWritten);

R5.01 Class X9UtilWorkResults has been
eliminated, with results now
returned using X9UtilWorkUnitList.

final X9UtilWorkUnitList workList = x9utilMain.launch(args1);
exitStatus = workList.getExitStatus();

R5.01 All SDK API’s have been updated
to utilize LocalDate/LocalTime as a
replacement for the older
java.util.Date. LocalDate was
introduced with Java 8, which is
also the minimum JDK release for
the SDK. LocalDate is immutable
and provided a much improved API
for developers.

X9Ware was focused on making
this transition as easy as possible.
This was important, since we had
to upgrade over 400k lines of code
across all of our applications, so
we needed the upgrade to be very
straight forward as well.

A new X9LocalDate static class has been implemented which
replaces our previous X9Date class. X9LocalDate contains the
same methods as X9Date, with several additions to make
things a bit more convenience. X9LocalDate no longer uses
java.util.Calendar. Similarly, we have eliminated almost all
usage of java.text.SimpleDateFormat within our code base. The
SDK example programs have been upgraded. Please let us
know if you have any questions.

final LocalDate today = X9LocalDate.getCurrentDate();

final String todaysDate = X9LocalDate.formatDate(today,
X9LocalDate.YYYY_MM_DD);

final String messageId = "timestamp:" +
X9LocalDate.formatDateTime(,X9LocalDate.getDateTime(),
"yyyyMMdd_Hhmmss_SSS");

R5.02 X9ExportInterface has a new
method public boolean
isExportImagesIrdFormat().

See SDK example X9ReadX9ExportCsv for usage.

R5.02 X9DecimalFormatter has been
eliminated and replaced with new
static class X9D. The new X9D
class is thread safe.

final StringBuilder sb = new StringBuilder();
sb.append("Export completed; csv lines
written(").append(X9D.formatLong(csvWriteCount));

R5.04 Static factory method
X9Exception.abort has been
replaced with X9Exception
constructors that are fully source
code compatible with the previous
abort() method.

Changed: throw X9Exception.abort(ex);
to: throw new X9Exception(ex);

R5.04 X9Field method
getValueAsLowerCase() renamed
to getValueAsIs(), as a better
description of it’s functionality.

Changed: final String newValue = x9field.
getValueAsLowerCase (x9o); to final String newValue =
x9field.getValueAsIs(x9o).

R5.04 Method createInputFileList()
moved from X9FileUtils to new
static class X9FileWalker.

final List<File> fileList =
X9FileWalker.createInputFileList(workUnit.inputFile,
isIncludeSubFolders, inputFileExtensions,
SKIP_INTERVAL_ZERO, isLoggingEnabled);

Page 18 of 166

X9Utilities User Guide X9Ware LLC

Release Functional Change New Code Patterns

Try-With-Resources

The Java try-with-resources construct is supported beginning with our SDK R3.07 release. This
enhancement uses the improved exception handling that was implemented with Java 1.7 that will
automatically and correctly close resources that are used within a try-catch block. X9Ware has
implemented the Closeable interface in our following classes:

• X9SdkIO
• X9StreamReader
• X9Reader
• X9Writer
• X9CsvReader
• X9CsvWriter

Try-with-sources has been used in our various X9Ware-SDK examples, so please reference them
as documentation on how to use this facility.

X9SdkIO implements Closeable so it can now automatically close all input files that have been
opened when invoked within a try-with-resources block. In order to provide backward
compatibility, it still provides separate close methods that can be invoked for each of the associated
input and output files. The X9SdkIO close() method has been implemented as follows:

/**
 * Close all is a convenience method in support of Closeable and try-with-resources. We close
 * all files that are currently open for this X9SdkIO instance; all file related processing must
 * be completed when we are invoked. This sdkIO method can be invoked directly or indirectly as
 * part of try-with-resources. Note that sdkIO statistics can be retrieved within an associated
 * try block since no additional IO will be performed. Although close all is convenient, it is
 * not applicable to all possible logic flows. An example is a file merge where one output file
 * is opened but where separate input files will be opened and closed as the merge progresses.
 * In that situation, close all does not apply and our lower level close routines are used
 * instead. Hence those routines remain as public to be invoked externally.
 */
@Override
final public void close() {

closeInputFile();
closeOutputFile();
closeImageReader();
closeCsvInputFile();
closeCsvOutputFile();

}

Page 19 of 166

X9Utilities User Guide X9Ware LLC

Installation TasksInstallation Tasks

SDK installation consists of the following basic tasks:

1. Read this guide for a full understanding of the X9Ware-SDK.

2. Review the provided Java examples to get a better idea of X9Ware-SDK application design
and to assist in your planning on how to use the X9Ware-SDK within your environment.

3. Review the distribution materials provided within the X9Ware-SDK zip distribution
package.

4. Build your JVM environment that will host the X9Ware-SDK and your Java application;
we require JRE 1.8 or higher.

5. Establish your desired logging subsystem which can be built on LOG4J (or others) based
on the logging systems that are supported by the SLF4J facade. Required JARs must be
added to your JVM environment. Review the logging topic for more information.

6. (Optionally) add the X9Ware external resource libraries to your JVM environment. When
doing this, the high level folder location must be assigned at run time using
X9LaunchFolder.setFolder(). These libraries are not part of the standard X9Ware-SDK
distribution but can be requested from X9Ware, or they can be used directly as distributed
from the associated distribution level of our X9Assist product. This step is typically not
needed, and would be done only when your environment requires a customized version of
resources versus what is packaged within the standard JAR.

7. Ensure you have an adequate JVM heap size set for your application based on your
environmental requirements and anticipated file sizes. The minimum heap size needed by
our X9Ware-SDK is 100MB and you should increase from that size as needed.

8. If you have startup problems, please provide the log and the issue description to X9Ware
for our research and resolution.

9. Use an X9Ware provided Java sample or your own written Java program to perform initial
testing of your JVM environment. If you have problems, review the system log which will
help to identify the issue that has been encountered. If necessary, follow our problem
reporting topic to provide information to X9Ware to get your issue resolved.

Page 20 of 166

X9Utilities User Guide X9Ware LLC

JAR Requirements and ClassPathJAR Requirements and ClassPath

X9Ware has worked to minimize the inclusion of open source and third party products within the
X9Ware-SDK. This continuous effort results in several benefits including a reduced software
footprint, fewer software dependencies, a reduced potential for release level conflicts across
multiple applications when running within a shared JVM, and reduced complexity.

The required jars needed by the X9Ware-SDK are as follows:

Product and Release Level Requirement Purpose and Comments

SLF4J: we are using 1.7.30 but
any recent release should be
functionally acceptable.

Mandatory Per the SLF4J web site: The Simple Logging Facade
for Java (SLF4J) serves as a simple facade or
abstraction for various logging frameworks, allowing
the end user to plug in the desired logging framework
at deployment time.

SLF4J plugin: Logging
environment plugin of your
choosing which must match the
SL4J API JAR release level
included in your class path.

Mandatory Available logging frameworks are Log4J, LogBack,
Logback, Java Util Logging, Simple, and None.

Apache Commons Lang3: we
internally use the 3.5 release of
this product.

Mandatory Per the Apache Commons web site: Provides highly
reusable static utility methods with a wide range of
functionality.

JAXB: which was included with
the JRE through Java 8 and
either deprecated or removed
with subsequent releases.

Required
when using
Java 9 or
higher.

Per the Jaxb website: The Java Architecture for XML
Binding (JAXB) provides an API and tools that
automate the mapping between XML documents and
Java objects.

We are currently using JAXB 2.4.0. Refer to our
current distribution “x9wareLib” for the actual jars
being used. Specifically, the requirements are: jaxb api
and runtime; istack tools and runtime; javax activation.

The X9Ware-SDK jar as packaged and distributed does not include a Java “.classpath” file. All
class path requirements must be fulfilled by your “-cp” parameters.

Our recommendation is to consider creating a sub-folder with all X9Ware required jars and then
using a wildcard to include the contents of that folder. For example, “-cp x9wareLib/*” can be
used to generically include all jars in a sub-folder and simplifies ongoing maintenance as the list
might change.

Page 21 of 166

X9Utilities User Guide X9Ware LLC

SLF4J LoggingSLF4J Logging

Logging functionality is absolutely critical to every application. X9Ware realizes that every
X9Ware-SDK user will have their own preferred logging implementations and standard processes
that are critical to their environments. This may include specific logging frameworks, formatting
rules, exits, and tools which implement automated cutoffs and archival.

X9Ware has utilized the SLF4J interface to avoid imposing a required single logging framework.
Using SLF4J, there is flexibility to choose your logging environment at deployment time by
inserting the corresponding SLF4J binding on the class path. This decision may then be changed at
any time by replacing this binding with another on the class path and restarting the application.
This SLF4J design approach has proven to be simple and robust, and has evolved over time to
increase flexibility.

As of SLF4J version 1.6.0, if no binding is found on the class path, then the SLF4J API will default
to a no-operation implementation and will then discard all log requests. Without a valid binding,
SLF4J emits a single warning message about the absence and then discards all log requests without
further protest. This is not acceptable, since you will need log output to monitor execution and
provide the input you will need on research and problem resolution.

Logging Frameworks

SLF4J supports various logging frameworks. The SLF4J distribution ships with various jar files
that are referred to as "SLF4J bindings", where each binding corresponding to a supported logging
framework. You will need to review the SLF4J online documentation and use that to determine the
jars that will be needed for your specific environment. The various SLF4J frameworks are as
follows:

slf4j-jdk14-x-x-x.jar Binding for java.util.logging, also commonly referred to as JDK
logging.

slf4j-log4j-x-x-x.jar Binding for log4j version, a widely used logging framework.

slf4j-simple-x-x-x .jar Binding for Simple implementation, which outputs all events to
System.err. Only messages of level INFO and higher are printed.
This binding may be useful in the context of small applications.

slf4j-jcl-x-x-x .jar Binding for Jakarta Commons Logging. This binding will
delegate all SLF4J logging to JCL.

logback-classic-x-x-x .jar The native implementation There are also SLF4J bindings
external to the SLF4J project, e.g. logback which implements
SLF4J natively. Logback's ch.qos.logback.classic.Logger class is
a direct implementation of SLF4J's org.slf4j.Logger interface.
Thus, using SLF4J in conjunction with logback involves strictly
zero memory and computational overhead.

Page 22 of 166

X9Utilities User Guide X9Ware LLC

slf4j-nop-x-x-x .jar Binding for NOP, which silently discards all logging.

X9Ware defaults to using the JDK logger. In this situation, X9Ware will dynamically create the
configuration files. Only two additional jars must be added via the class path:

slf4j-api-xx.jar (X9Ware currently using 1.7.30)
slf4j-jdk14-xx.jar “

Another example is using Log4j2, where the following jars will be needed on the class path:

slf4j-api-xx.jar (X9Ware currently using 1.7.30)
log4j-api-xx.jar (X9Ware currently using 2.17)
log4j-core-xx.jar “
log4j-slf4j-impl-x.jar “

Configuration of Log4j2 can be accomplished in one of several ways. Refer to the Log4j2 for
more information. The configuration options are:

• Through a configuration file written in XML, JSON, YAML, or properties format.
• Programmatically, by creating a ConfigurationFactory and Configuration implementation.
• Programmatically, by calling the APIs exposed in the Configuration interface to add

components to the default configuration.
• Programmatically, by calling methods on the internal Logger class.

X9SdkLogger

X9SdkLogger is our internal class that may be used to used to initiate logging when the JDK
logger is to be utilized. X9JdkLogger allows you to explicitly define the folder location to be used
for all log files. When omitted, logging will be done to the “log” folder within the system work
folder.

final String LOGGING_FOLDER_SWITCH = "log";
final File[] files = X9CommandLine.parse(args);
final String logFolder;
if (X9CommandLine.isSwitchSet(LOGGING_FOLDER_SWITCH)) {

logFolder = X9CommandLine.getSwitchValue(LOGGING_FOLDER_SWITCH);
X9JdkLogger.initialize(new File(logFolder));

} else {
logFolder = "";
X9JdkLogger.initialize();

}

Page 23 of 166

X9Utilities User Guide X9Ware LLC

Linux ConsiderationsLinux Considerations

Setting up the X9Ware-SDK for Linux is essentially the same for either Windows or Linux
installations.

We have seen some Linux systems throw the following error during startup:

Exception in thread "main" java.lang.InternalError: Can't connect to X11 window server ….
 at sun.awt.X11GraphicsEnvironment.initDisplay(Native Method)
 at sun.awt.X11GraphicsEnvironment.access$200(X11GraphicsEnvironment.java:65)
 at sun.awt.X11GraphicsEnvironment$1.run(X11GraphicsEnvironment.java:110)
 at java.security.AccessController.doPrivileged(Native Method)
 at sun.awt.X11GraphicsEnvironment.<clinit>(X11GraphicsEnvironment.java:74)
……..
……..

This can be resolved in one of several ways:

• Specify the -Djava.awt.headless=true parameter at startup time

• Or, add the following at the very beginning of your X9Ware-SDK application program

X9SdkRoot.setHeadless();

Page 24 of 166

X9Utilities User Guide X9Ware LLC

AWS CloudAWS Cloud Considerations Considerations

We have numerous customers running the X9Ware-SDK with the AWS (Amazon Web Services)
cloud platform.
Based on customer feedback, the easiest way to accomplish this is to use Elastic Beanstalk.

Per the Amazon website, AWS Elastic Beanstalk is an easy-to-use service for deploying and
scaling web applications and services developed with Java, .NET, PHP, Node.js, Python, Ruby, Go,
and Docker on familiar servers such as Apache, Nginx, Passenger, and IIS. Elastic Beanstalk
automatically handles the deployment, from capacity provisioning, load balancing, auto-scaling to
application health monitoring. At the same time, you retain full control over the AWS resources
powering your application and can access the underlying resources at any time. There is no
additional charge for Elastic Beanstalk, where it is part of the core AWS product.

Our customers who have deployed X9Ware-SDK applications using Elastic Beanstalk have
indicated that they did not have any issues arise during their development, testing, and deployment.
The automation that was provided greatly simplified the overall process.

Elastic Beanstalk provides services in the following areas:

• Simplified setup and installation
• Developer productivity
• Resource Control
• Automated scaling

Page 25 of 166

X9Utilities User Guide X9Ware LLC

Submitting Problem ReportsSubmitting Problem Reports

X9Ware has worked hard to provide the best possible product to our customers. However,
problems can and will happen. Many are unique to the client's technical environment or issues that
are specific to the installation. Issues can arise to your use of specific X9Ware-SDK functions. If a
problem arises, X9Ware will work with you to resolve the problem as quickly as possible.

To work on a problem, we request the following information be provided:

• A brief description of what your application is trying to accomplish.

• The system log from the failure. A new log is created for each X9Ware-SDK execution.
The logs are written to the system work folder unless overridden during start-up by your
X9Ware-SDK application itself. The individual logs are time stamped so please provide the
log that goes along with your failure.

• Any supporting information that may be helpful.

Page 26 of 166

X9Utilities User Guide X9Ware LLC

Runtime ResourcesRuntime Resources

The X9Ware-SDK requires a series of resources which contain components that are associated
with x9 file formats, x9 validation, tiff validation, image templates, internal fonts, and so forth.
These resources can be located and accessed using one of the following techniques:

1) Use the resources which are embedded within the JAR. The X9Ware-SDK has all needed
components as self defined and internally embedded within the “/resources” folder within
the JAR. You can use a ZIP tool to take a detailed look at these files and folders.
Components are located and loaded from the JAR as needed at execution time. This
approach is recommended for all X9Ware-SDK users whenever possible due to the
simplicity.

2) Modify or extend the resources within the JAR. This is an advanced topic and is typically
used when you want to modify or extend our distribution components. In this case you
would use a ZIP tool to unzip the X9Ware-SDK JAR, make your modifications as needed
to the created folder structure, and then re-zip those folders to recreate your JAR. This
approach is recommended because the JAR still contains all code and resources which are
needed for your environment. All very beneficial.

3) Finally, define resources in your file system in either the home or launch folders. This is an
advanced topic and is typically used when you want to modify or extend our distribution
components and you do not want to apply those updates within the JAR. In this case, you
can use the resources as they would be obtained from X9Ware as the basis for your
modifications. You can then position these folders within your file system, in either the
home or launch folders. Be sure to use matching X9Ware-SDK and resource build levels as
you populate these folders, since the content and structure of these components may change
from release to release.

Runtime Folders

Folder Description

fonts Contains various fonts which are used by the X9Ware tools.

images Contains various image templates which are used by the X9Ware tools.

invalidImages Contains various invalid image test cases which are pre-populated by
X9Ware for invalid image scenario testing.

 log Contains log files when you use the X9JdkLogger as provided by X9Ware.
This folder is used by our JDK logging routines but would not be used for
example by your LOG4J environment.

 properties Contains the properties file that is internally defined and to be used for the
X9Ware-SDK environment.

 rules Contains the rules that define your x9 configurations. Sub-folders are:
• messages
• tables

Page 27 of 166

X9Utilities User Guide X9Ware LLC

Folder Description

• tiffrules
• x9rules

 xml Contains XML files and folders. The following are used during environment
initialization:

• checkFormats.xml
• config.xml
• map.xml
• modCheck.xml
• routing.xml

Informational messages are included in the log which identify the location which has been
determined for these resource files.

This example shows all resource folders being loaded from the JAR:

2015-10-04 10:51:48.601 [INFO] folder(fonts) location(jar/resources/fonts)
(com.x9ware.base.X9SdkRoot.logStartupEnvironment:112)
2015-10-04 10:51:48.602 [INFO] folder(images) location(jar/resources/images)
(com.x9ware.base.X9SdkRoot.logStartupEnvironment:112)
2015-10-04 10:51:48.602 [INFO] folder(invalidImages) location(jar/resources/invalidImages)
(com.x9ware.base.X9SdkRoot.logStartupEnvironment:112)
2015-10-04 10:51:48.603 [INFO] folder(rules) location(jar/resources/rules)
(com.x9ware.base.X9SdkRoot.logStartupEnvironment:112)
2015-10-04 10:51:48.603 [INFO] folder(xml) location(jar/resources/xml)
(com.x9ware.base.X9SdkRoot.logStartupEnvironment:112)

This example shows the fonts and invalid images folders being loaded from the JAR while other
resources have been located in external folders:

2015-10-04 10:45:21.372 [INFO] folder(fonts) location(jar/resources/fonts)
(com.x9ware.base.X9SdkRoot.logStartupEnvironment:112)
2015-10-04 10:45:21.372 [INFO] folder(images) location(C:\Users\X9Ware2\Documents\
x9_assist\images) (com.x9ware.base.X9SdkRoot.logStartupEnvironment:112)
2015-10-04 10:45:21.373 [INFO] folder(invalidImages) location(jar/resources/invalidImages)
(com.x9ware.base.X9SdkRoot.logStartupEnvironment:112)
2015-10-04 10:45:21.373 [INFO] folder(rules) location(C:\Users\X9Ware2\X9WareDrive\
X9WareGitRepository\x9Assist\rules) (com.x9ware.base.X9SdkRoot.logStartupEnvironment:112)
2015-10-04 10:45:21.374 [INFO] folder(xml) location(C:\Users\X9Ware2\Documents\x9_assist\
xml) (com.x9ware.base.X9SdkRoot.logStartupEnvironment:112)

Page 28 of 166

X9Utilities User Guide X9Ware LLC

System FoldersSystem Folders

The X9Ware-SDK has several core folder locations which are assigned on a default basis during
startup and can be overridden as needed. These folders are as follows:

Folder Folder Usage

Launch Folder The launch folder represents the file folder location from which the X9Ware-SDK
has been installed and launched. This folder was important for early versions of the
X9Ware-SDK but is no longer critical since resource files are now embedded
within the X9Ware-SDK and not referenced externally. The launch folder is read-
only. The X9Ware-SDK will never write to the launch folder. The only need for the
launch folder would be to load modified rules files (etc) should that be a user
requirement. It is instead recommended that those files be packaged within
X9Ware-SDK jar and that they are not loaded from the file system.

Work Folder The work folder represents a file folder where the X9Ware-SDK can locate various
system modifiable files and folders that are read and written during run time. The
work folder requires write privileges, which is reason for its existence and logical
separation from the launch folder. For example, if you are using the JDK logger,
then the LOG folder will be assigned within the work folder. Another possible use
of the work folder is to host temp files, which can be used for the creation of
various intermediate files by certain X9Ware-SDK functions.

Home Folder The home folder represents a file folder where the X9Ware-SDK can locate various
user modifiable files and folders that are read and written during run time. The
home folder is used by the X9Ware X9Assist product but is typically not used by
other X9Ware-SDK based applications.

Logging During Startup

The system folder locations are written to the system log during startup. This logging includes their
location as well as the assignment method. An example is as follows:

2017-02-13 09:00:35.345 [INFO] properties defaulted
2017-02-13 09:00:35.346 [INFO] launchFolder set from absolute path(C:\xx\xx\xx)
2017-02-13 09:00:35.347 [INFO] homeFolder set from FileSystemView(C:\xx\xx\xx
2017-02-13 09:00:35.347 [INFO] workFolder set from AppData(C:\xx\xx\xx)

Explicitly Setting the System Folders

The system folder locations can be explicitly assigned when they are to be overriden from default
locations. These overrides must be assigned before the X9Ware-SDK instance is allocated. This is
typically an advanced topic and is not required by most X9Ware-SDK installations. If you do not
explicitly assign these folder locations, then the X9Ware-SDK will utilize default logic to
determine their location. The default assignment logic has been developed and fine tuned for our
X9Assist and X9Utillities products, which may (or may not) be appropriate for your specific

Page 29 of 166

X9Utilities User Guide X9Ware LLC

environment. It is suggested that you thoroughly test these assignments and ensure that you have a
perfected strategy for your launch and home folder assignments.

Explicit Assignment of the Launch Folder

The launch folder must be assigned first (before the home folder). As noted above, the X9Ware-
SDK default is to assign a shared folder location for the launch and home folders. With that default
in place, you then will only need to specify the launch folder, with that assignment then also be
used for the home folder. You can explicitly assign the launch folder as follows:

File launchFolder = new File("c:/yourApplication/runTime/x9sdk");
X9LaunchFolder.setFolderFolder(launchFolder);

Explicit Assignment of the Work Folder

The work folder may be optionally assigned after the launch folder location has been specified but
only in specific conditions as needed by your application:

File workFolder = new File("c:/home/x9ware/x9sdkWork/");
X9Properties.setWorkFolder(workFolder);

Explicit Assignment of the Home Folder

The home folder may be optionally assigned after the launch folder location has been specified but
only in specific conditions as needed by your application:

File homeFolder = new File("c:/home/x9ware/x9sdkHome/");
X9HomeFolder.setFolder(homeFolder);

Page 30 of 166

X9Utilities User Guide X9Ware LLC

X9Ware-SDK FundamentalsX9Ware-SDK Fundamentals

The following core classes exist with the X9Ware-SDK:

Class Description

X9SdkRoot X9SdkRoot is a static class that hosts system wide information within the SDK.
Most functions within X9SdkRoot are used during your application initialization
process and before your first X9SdkBase instance is created.

X9SdkBase A new X9SdkBase instance is created for each SDK thread that is being processed
within your application. Most applications will run with a single X9SdkBase
instance. X9SdkRoot assignments must be made before your first X9SdkBase
instance is allocated.

X9Sdk A new X9Sdk instance is created for each independent processing function within
your application. X9SdkBase can own one or more X9Sdk instances. Most
applications will use a single X9Sdk instance but that is not an absolute
requirement. For example, if you application needs to read two separate x9 files at
the same time, you would want to allocate a single X9SdkBase and then two
X9Sdk instances, where each of these would be used to read a single x9 file.

X9SdkIO X9SdkIO contains IO related fields for the current X9Sdk instance. Each X9Sdk
instance has a single X9SdkIO instance which is allocated in the X9Sdk
constructor. An X9SdkIO instance can accommodate a single logical grouping of
input and output files. For example, a single X9SdkIO instance can support x9
input and x9 output, CSV input and x9 output, or x9 input and CSV output.

X9SdkObject X9SdkObjects are used by X9SdkIO to represent a single x9 record. This object is
created for every possible x9 record type (not just checks). In additional to x9
record and field data, there are also fields with more limited usage that apply only
to checks. This includes the check amount and image based attributes such as the
image itself (in one of several forms) and an indicator as to whether the image
represents the front or back of the check. x9 data can be initially presented to
X9SdkObject in one of several forms. The first option is to provide the data from
an external source which can be either an x9 or csv file. The second option is to
provide the x9 data from an internally created csv array, which represents the
individual fields that are to be ultimately used to create an x9 record. The final
option is to build the x9 data on a record by record and field by field basis.

X9Object X9Object is the internal representation of each x9 record type and is core
functionality within the SDK and our X9Assist application. X9Objects can be
stored into an array list using methods provided by X9ObjectManager. Note that x9
data is stored into X9Objects but the tiff images are only optionally stored, which
can dramatically reduce the amount of memory required by the x9objects for an
entire x9 file. Random access to tiff images is provided using X9ImageReader to
obtain images when not stored. X9Object provides a large number of fields that
provide record level information such as record number, record type, and the raw

Page 31 of 166

X9Utilities User Guide X9Ware LLC

Class Description

data data for this x9 record. There are a large number of methods that provide
access to data at the field level and also allow you to walk all x9objects in a
forward or backward direction.

Page 32 of 166

X9Utilities User Guide X9Ware LLC

X9Ware-SDK InitializationX9Ware-SDK Initialization

Every application environment has possible unique features, so it is difficult to present a boiler
plate that shows every possible X9Ware-SDK initiation and termination requirement that might be
applicable to every technical environment.

Our goal is here to highlight a sample X9Ware-SDK initialization process, which should be
generally appropriate for many environments.

Remember that X9SdkBase is normally only created once for your application, but would instead
by created once per thread when you are processing within a within a multi-threaded environment.
We do recommend engaging X9Ware Consulting Services for complex environments, to ensure
your success.

License Keys

The X9Ware-SDK is specifically licensed to a company-contact, with the intent to identify
accountability and ownership. X9Ware provides an encrypted licensing XML document to each
customer which is a static string that must be set as part of initialization. Each license includes an
expiration date, where a value of “12/31/9999” is assigned for perpetual licenses.

See the highlighted code below that sets the license key for the current environment.

Sample Startup Code

This sample code illustrates high level code structure for a typical x9 application:

/*
 * Open the JDK logger.
 */
X9JdkLogger.initialize();

/*
 * Invoke your application.
 */
try {

/*
 * Initialize the environment.
 */
X9BuildAttr.setSdkProductLicense(licenseXmlDocument);
X9SdkRoot.logStartupEnvironment("YourProgramName");
X9SdkRoot.loadXmlConfigurationFiles();

sdkBase = new X9SdkBase();

/*
 * Set the x9 configuration which defines the x9 rules.
 */
if (!sdkBase.bindConfiguration(X9.X9_37_CONFIG_NAME)) {

Page 33 of 166

X9Utilities User Guide X9Ware LLC

throw new X9Exception(“bind unsuccessful”);

}

/*
 * Automatically calculate trailer totals.
 */
sdkBase.setRepairTrailers(true);

/*
 * Run your application.
 */
process();

} catch (Exception ex) {
LOGGER.error("exception", ex);

} finally {
X9SdkRoot.shutdown();
X9JdkLogger.close();
System.exit(0);

}

Please be advised that this is just a sample. Specific coding will be dependent on your technical
environment and your specific needs.

Bind Configurations

The X9Ware-SDK must bind to a configuration during the initialization process. A configuration
defines the records, fields, and validation rules which are applied. There are a variety of predefined
configurations, where each represents a commonly used set of rules used through the industry
today.

/*
 * Standard configurations.
 */
public static final String ACH_NACHA_2013_CONFIG = "nacha-2013";
public static final String ACH_CORE_VALIDATIONS_CONFIG = "nacha-core-

validations";
public static final String ACH_NO_VALIDATIONS_CONFIG = "nacha-no-validations";
public static final String X9_DSTU_NO_VALIDATIONS_CONFIG =

"x9.dstu-no-field-validations";
public static final String X9_37_CONFIG = "x9.37";
public static final String X9_100_180_2006_CONFIG = "x9.100-180-2006";
public static final String X9_100_180_2013_CONFIG = "x9.100-180-2013";
public static final String X9_100_187_2008_CONFIG = "x9.100-187-2008";
public static final String X9_100_187_2013_CONFIG = "x9.100-187-2013";
public static final String X9_100_187_2016_CONFIG = "x9.100-187-2016";
public static final String X9_100_187_UCD_2008_CONFIG = "x9.100-187_UCD-2008";
public static final String X9_100_187_UCD_2013_CONFIG = "x9.100-187_UCD-2013";
public static final String X9_100_187_UCD_2016_CONFIG = "x9.100-187_UCD-2016";
public static final String X9_100_187_UCD_2018_CONFIG = "x9.100-187_UCD-2018";
public static final String X9_CPA_015_CONFIG = "x9.CPA_015";
public static final String X9_EC_ACH_CONFIG = "x9.EcAch";

Page 34 of 166

X9Utilities User Guide X9Ware LLC

public static final String X9_EEX_CONFIG = "x9.Eex";
public static final String X9_FRB_CONFIG = "x9.Frb";
public static final String X9_SVPCO_CONFIG = "x9.SvpCo";
public static final String X9_VIEWPOINTE_CONFIG = "x9.Viewpointe";

The most basic configuration for x9.37 is: X9_37_CONFIG.

The most basic configuration for x9.37 is: ACH_NACHA_2013_CONFIG.

In order to become familiar with the various configurations, we recommend that you use either
X9Validator or X9Assist to display the same physical file while flipping the configuration from
one setting to another. This will allow you to both see and experience the validations that are
applied by each of these, and help to provide insight into their differences.

X9.37 Configurations

The X9.37 environment is known to have numerous file specifications that have evolved since
their introduction in 2003. These specifications have extreme differences in both the fields that are
present as well as the validation rules to be applied.

The x9.100-180 specifications are probably the wild card due to their late introduction and the
large number of core differences that are present within this standard. Due to a number of factors
and their associated complexity, the x9.100-180 specification is used infrequently within the
industry today.

The x9.37 specifications include high-level controls that identify their core attributes. This includes
the use of field zero (which is the four byte prefix on the front of each data record) and character
set encoding (EBCDIC versus ASCII).

ACH Configurations

ACH has an anomaly where fields can be defined as either “mandatory”, “required”, or “optional”.
There is a very fuzzy difference between mandatory and required. The presence of mandatory
fields is absolute, while the presence of required fields is deferred to the receiver. The reality is that
most fields that are defined as “required” will be needed by the receiver. For example, account
number is defined as required, when in reality a transaction is incomplete without this core data
element.

ACH_NACHA_2013_CONFIG represents the NACHA standard including the field level
definition of mandatory versus required. When used in its most basic state,
ACH_NACHA_2013_CONFIG will treat required fields as optional, due to the nature and spirit of
the specification. However, also note that ACH_NACHA_2013_CONFIG can be dynamically
configured to treat all required fields as mandatory. This is accomplished by setting
X9Options.requiredFieldsAreMandatory = true.

ACH_CORE_VALIDATIONS_CONFIG is an extension of ACH_NACHA_2013_CONFIG which
overrides the most commonly needed fields as mandatory. Obviously, this is a somewhat arbitrary
decision, due to the gray areas that the specification itself was attempting to avoid.

Page 35 of 166

X9Utilities User Guide X9Ware LLC

X9Ware-SDK ShutdownX9Ware-SDK Shutdown

There are several considerations for your X9Ware-SDK shutdown sequence:

• All of your application processes should be completed.
• X9ImageReader should be closed if you have it opened against an x9 file.
• X9Ware-SDK shutdown should be performed.
• Your logging environment should be appropriately closed.

X9Ware-SDK shutdown can be performed as follows:

/*
 * Shutdown the sdk.
 */
X9SdkRoot.shutdown();

This X9Ware-SDK shutdown process consists of the following activities:

• Final X9FontCache statistics are logged.
• Final X9FontManager statistics are logged.
• Any open X9ImageReader instances are closed.
• X9ThreadPool is closed which terminates all threads.

 A shutdown parameter allows you to indicate if shutdown statistics should be logged, which
defaults to enabled (true).

Shutdown will not close the current SLF4J logging environment, which you may need to do after
your shutdown has been completed. The JDK logger that is implemented by X9Ware can be closed
as follows:

/*
 * Close the logging environment.
 */
X9JdkLogger.close();

Page 36 of 166

X9Utilities User Guide X9Ware LLC

X9Ware-SDK Includes X9UtilitiesX9Ware-SDK Includes X9Utilities

The X9Ware SDK incorporates X9Utilities within its overall framework, and specifically from the
perspective of a Java application. SDK customers can invoke X9Utilities in one of two ways:

• From a Java program that you develop, which invokes the X9Utilities classes within the
SDK, using the SDK jar itself. When used in this manner, you are invoking utility functions
from your own application program. This allows you to incorporate these proven functions
directly into your application, but also requires knowledge of the overall operation of
X9Utilities and how you can integrate it into your application. We have designed
X9UtilMain in such a manner to make this possible.

• Using a separately provided X9Utilities runtime jar, which is provided on our website
download page (in addition to the SDK download package). When used in this manner, you
are invoking X9Utilities in the same way as other customers that have purchased our
X9Utilities standalone product, and have not purchased the SDK. To do this, you will need
to download and install X9Utilities and use a separately provided SDK encrypted license
key (elicense.txt), which must be stored into the ‘license’ folder. This elicense.txt file is
provided to you at the time of your SDK purchase and is a perpetual key. Please contact us
if you need the elicense.txt file regenerated for you. Note that we do not provide the
Windows based installer for X9Utilities and only the JAR package.

All classes that comprise the X9Utilities product are encapsulated within the SDK itself, and are
exposed as part of the public SDK API. Consequently, a Java program can utilize these classes
programatically (by that we mean from a Java program), either as individual utility functions, or
by launching them through the main utility class.

The X9Utilities main class allows you to implement your preferred logging environment, through
the SLF4J logging facade. For instance, you can use Log4J or LogBack, and not be tied to the JDK
logger as is utilized by our distributed batch utilities product. Moreover, you have the flexibility to
invoke X9Utilities multiple times within a single run unit or thread, enabling you to open the log,
invoke one or more utility functions, monitor exit status, and make decisions regarding how to
proceed with processing. For example, with this type of design, you could invoke a merge
followed by an export. Using these proven tools, you can easily integrate your application code
with one or more utility functions to build a more comprehensive solution tailored to your needs.

However, despite these capabilities, it's important to note a specific limitation: you cannot execute
the X9Utilities Java Main class (externally) from the command line using the SDK JAR. To do so,
you would require an actual X9Utilities license, and your SDK license does not serve as a
substitute for this license requirement. If executing X9Utilities from the command line is essential
to your solution, we offer a substantial discount on X9Utilities to facilitate this need. This
distinction emphasizes that while the SDK is a tool that can be used by Java developers to embed
utility functions within their programs, X9Utilities remains as a standalone command-line product.
This licensing difference is a key factor reflecting the intended use and separation of these two
environments.

Page 37 of 166

X9Utilities User Guide X9Ware LLC

The X9Ware-SDK includes all Java classes that are utilized by our X9Utilities product. Hence
X9Ware-SDK applications can directly invoke X9Utilities functions, as documented in the
X9Utilities User Guide. These functions will perform exactly as they do for X9Utilities. The only
significant difference is that the system exit is not performed on completion of the X9Utilities run.
A system log will still be created for each uniquely invoked run.

Use of specific X9Utilities functions within your applications may simplify your development
process and shorten your development cycle. However, when you leverage these capabilities, you
will need to be aware of how these classes are organized, and will be responsible for the
implementation testing necessary to ensure compatibility within your runtime environment.

X9Ware does not guarantee that the technical design of these classes will remain the same. There
may be significant change or even complete redesigns over a period of time. You need to be aware
that this possibility does exist and may result in future work on your part.

The high level code for X9Utilities is broken into several core classes:

• X9UtilMain contains the main() class and is responsible for initiation and termination and
extends X9UtilBatch.

• X9UtilBatch implements common functions. All methods are public so they can be
overridden as needed.

• X9UtilWorkUnit represents a single unit of work as performed within X9Utilities.
• Each worker function (write, export, validate, merge, compare, etc) is implemented as an

independent class. These classes can be invoked directly or through X9UtilMain.

X9Ware has will provide current source code for X9UtilMain, X9UtilBatch, and X9UtilWorkUnit
upon written request from licensed users. Source code for X9UtilMain (as of R5.03) is as follows:

package com.x9ware.utilities;

import java.util.List;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.x9ware.elements.X9Products;
import com.x9ware.error.X9Error;

/**
 * X9UtilMain is the static main class for X9Utilities, which is the command line interface for our
 * various batch products. The actual batch functions that are allowed will be determined based on
 * the current client license. Attempting to invoke a function that is not supported by the current
 * license will result in an abort. X9UtilMain is itself an extension of X9UtilBatch, where all
 * actually processing is performed. This design allows other SDK applications to extend X9UtilBatch
 * in a similar manner.
 *
 * @author X9Ware LLC. Copyright(c) 2012-2022 X9Ware LLC. All Rights Reserved. This is proprietary
 * software as developed and licensed by X9Ware LLC under the exclusive legal right of the
 * copyright holder. All licensees are provided the right to use the software only under
 * certain conditions, and are explicitly restricted from other specific uses including
 * modification, sharing, reuse, redistribution, or reverse engineering.
 */
public class X9UtilMain extends X9UtilBatch {

Page 38 of 166

X9Utilities User Guide X9Ware LLC

/*
 * Constants.
 */
public static final boolean ENVIRONMENT_OPEN_CLOSE_ENABLED = true;
public static final boolean ENVIRONMENT_OPEN_CLOSE_DISABLED = false;

/**
 * Logger instance.
 */
private static final Logger LOGGER = LoggerFactory.getLogger(X9UtilMain.class);

/**
 * X9UtilMain Constructor.
 */
public X9UtilMain() {

/*
 * This constructor is always used when x9utilities is run from the command line. In this
 * launch scenario, we use the X9UTILITIES product name, which forces an x9utilities license
 * key to be located and applied to the runtime environment.
 */
super(X9Products.X9UTILITIES, ENVIRONMENT_OPEN_ENABLED, ENVIRONMENT_CLOSE_ENABLED);

}

/**
 * X9UtilMain Constructor with explicitly defined environment open and close parameters.
 *
 * @param is_EnvironmentToBeOpenedAndClosed
 * true or false
 */
public X9UtilMain(final boolean is_EnvironmentToBeOpenedAndClosed) {

this(is_EnvironmentToBeOpenedAndClosed, is_EnvironmentToBeOpenedAndClosed);
}

/**
 * X9UtilMain Constructor with explicitly defined open and close parameters.
 *
 * @param is_EnvironmentToBeOpened
 * true or false
 * @param is_EnvironmentToBeClosed
 * true or false
 */
public X9UtilMain(final boolean is_EnvironmentToBeOpened,

final boolean is_EnvironmentToBeClosed) {
/*
 * This constructor can only be invoked from an sdk application (it is never used from
 * x9utilities command line). This could be an sdk user application, but it could also be
 * x9assist running the utilities console. Either way, we now open the batch environment
 * with our sdk product name. We can logically do this since the invoking application has
 * already had its license key validated, hence it is appropriate to allow x9utilities to
 * launch without further license key validation. This is a core requirement, since an
 * x9assist user running the utilities console does not have an x9utilities license.
 */
super(X9Products.X9SDK, is_EnvironmentToBeOpened, is_EnvironmentToBeClosed);

}

/**
 * Main as invoked directly from the command line. The only thing unique here is that we include
 * system exit which terminates the currently running JVM. Our launch method can otherwise be
 * used for more control over the runtime environment.
 *
 * @param args
 * command line arguments
 */
public static void main(final String[] args) {

/*
 * Run using try-with-resources to ensure we always close and system exit.
 */
int exitStatus = EXIT_STATUS_ABORTED;

Page 39 of 166

X9Utilities User Guide X9Ware LLC

try (final X9UtilMain x9utilMain = new X9UtilMain()) {
/*
 * Launch the x9utilities runtime.
 */
final X9UtilWorkUnitList workUnitList = x9utilMain.launch(args);
exitStatus = workUnitList.getExitStatus();

/*
 * Generate list of all processing errors (writer, import, etc).
 */
final List<X9Error> processingErrorList = workUnitList.getProcessingErrorList();
if (processingErrorList != null && processingErrorList.size() > 0) {

LOGGER.error("summary of processing errors:");
for (final X9Error x9error : processingErrorList) {

LOGGER.error(x9error.getFormulatedErrorString());
}

}
} catch (final Throwable t) {

LOGGER.error("exception", t);
} finally {

System.exit(exitStatus);
}

}

}

Page 40 of 166

X9Utilities User Guide X9Ware LLC

Using X9ObjectsUsing X9Objects

X9Object is an abstract class which defines that attributes of a single data record. An entire file can
be loaded to an X9ObjectManager list, which provides transversal and management methods. If a
file with 10,000 records is loaded to a list, then the list will have 10,000 x9objects.

X9Object has instantiated classes X9Object937 (for x9.37 records) and X9ObjectAch (for ach
records). Within X9Object, there are several core fields that are exposed as public that are used
extremely frequently. These are as follows:

 x9ObjIdx Contains the record index within the overall x9 file and is relative to one.

 X9ObjType Contains the record type. Instead of hard coding equal checks for certain record
types, it is instead recommend that you use the constants that are provided in
X9Ware-SDK class X9.

X9ObjFormat Contains the record format which is a three character string and typically has a
value of “000”. The exception to this is those record types which have multiple
logical formats, such as x9 credits and ach addendas.

X9ObjData Contains the record data as a string which is stored in ASCII. This is typically 80
characters for x9 files and will always be 94 characters for ach files. Note that the
type 52 image detail records for x9 files do not contain the actual images, but
contain the x9 record data only.

The X9Object class has a large number of attributes which are exposed via getters and setters. You
should closely review this functionality within the JavaDoc. There are a correspondingly long list
of provided methods to logically access and manipulate the data that is stored within each x9object
instance. X9Object provides methods to easily walk the records within the file in forward or
backward directions.

X9ObjectManager is a companion class to X9Object provides a variety methods that are used to
manage these record objects. In particular, X9ObjectManager allows x9objects to be efficiently
stored in an array list which can then be used for a wide variety of purposes. Methods are provided
to allow the first and last x9objects to be directly retrieved from the list. You can also retrieve any
x9object by its corresponding index. Once you have access to an individual x9object, you can use
it as the basis to then move forward and backward within the list.

X9ObjectManager is reusable, allowing a file file to be loaded to objects, then reset, and then
reloaded from another file. You should closely review this functionality has well as a long list of
methods that are provided to further access and manipulate x9object data.

An X9Object can be marked as deleted. This is done on a logical basis, which means that the
instance is marked as deleted but physically remains within the X9ObjectManager object list. An
x9object that is marked as deleted will be logically skipped over when walking objects in either a

Page 41 of 166

X9Utilities User Guide X9Ware LLC

forward or backward direction. An x9object that has been deleted can be reverted by changing the
delete indicator.

• A common requirement is the need to reference a header record (file header, cash letter
header, or bundle header) from a record within an item group. There are two ways to
accomplish this:

• One alternative is to use the x9object “walk” methods which will traverse the x9objects in a
reverse direction to obtain the needed header record. It should be noted that these methods
will have associated overhead for larger files based on the repeated use of get previous.

• Another alternative is to use the x9object getter methods to directly obtain the associated
file header, cash letter header, or bundle header. These methods utilize an internal
X9Headers index that is stored within each x9object and is much more efficient than
walking to the needed header records. Use of these x9object header getter methods requires
that you first invoke the assign headers index method within X9ObjectManager prior to
using indexing reference. Note this is always done by X9Validator since it is depending on
those indexes being in place. If you are using X9ObjectManager lists but are not doing an
x9 file validation, then you will need to assign the header indexes prior to using the getter
methods.

Page 42 of 166

X9Utilities User Guide X9Ware LLC

Retrieving Fields within X9 RecordsRetrieving Fields within X9 Records

There are several ways to retrieve specific fields with x9 record types. You can choose from these
alternatives based on your specific application requirements.

1) Create an x9 type specific object from an sdkObject or another source of x9 data.
SdkObjects are typically created by X9SdkObjectFactory using X9SdkIO. Field values can then be
retrieved directly from the x9 type specific object on a logical name basis.

X9Type01 t01 = new X9Type01(sdkBase, sdkObject.getX9AsciiRecord());
String destinationRouting = t01.immediateDestinationRoutingNumber;
String originationRouting = t01.immedateOriginRoutingNumber;
String createDate = t01.fileCreationDate;
String createTime = t01.fileCreationTime;
String fileIdModifier = t01.fileIdModifier;

2) Create an x9 type specific object from a previously created x9object and then retrieve the
data fields on a logical name basis.

X9Type25 t25 = new X9Type25(x9o);
String routing = t25.payorBankRouting + t25.payorBankRoutingCheckDigit;
String micrOnUs = t25.micrOnUs;
String isn = t25.itemSequenceNumber;
BigDecimal amount = X9Decimal.getAsAmount(t25.amount);

3) Create an X9Item object which can then be used to retrieve a wide variety of commonly
required x9 fields. X9Item fields can be populated in one of several manners. The easiest is to
provide an x9object which contains the target item. The setItemFields method has other
alternatives including the ability to parse a scanned MICR line to obtain individual fields. An
example of setting fields from an x9object instance and then retrieving fields is as follows:

X9Item x9item = new X9Item();
x9item.setItemFields(x9o);
String micrAuxOnUs = x9item.getAuxOnus();
String micrRouting = x9item.getRouting();
String micrOnUs = x9item.getOnus();

4) Extract a specific field from an x9 record using the x9object and field number. This
approach can be used to extract any field directly from the x9 byte array as a string and is most
efficient when only one or two fields are to be referenced.

String bundleId = x9o.getFieldValue(sdkBase.r20BundleIdentifier);

5) Use the x9object to access any defined field within that x9 record type by field number.
This approach has the benefit that it easily extracts the data from the x9 record itself (eg, from the
80 byte data record), and can thus be equally well for x9objects, sdkobjects, or x9 data that comes
from any other input source.

Page 43 of 166

X9Utilities User Guide X9Ware LLC

/*
 * Get the x9field object for the bundle identifier.
 */
X9FieldManager x9fieldManager = sdkBase.getFieldManager();
X9Field x9field = x9fieldManager.getFieldObject(X9.BUNDLE_HEADER,

X9.R20BundleIdentifier);

/*
 * Get the field value and field length.
 */
String bundleIdentifier = x9field.getStringValue(x9recordData).trim();
int fieldLength = x9field.getLength(x9recordData);

6) Sequentially walk all of the fields within an x9 record using the field walker.

/*
 * Walk all of the x9 records within the current x9 file.
 */
X9Object x9o = X9GuiAnchor.getFirstObject();
while (x9o != null) {

/*
 * Walk all of the fields within the current x9 record.
 */
final X9Field[] fieldArray = x9walk.getFieldArray(x9o);
for (X9Field x9field : fieldArray) {

/*
 * Get the field value.
 */
String value = x9field.getFieldValueTrimmed(x9o);

}
}

Page 44 of 166

X9Utilities User Guide X9Ware LLC

Modifying Fields within X9 RecordsModifying Fields within X9 Records

There are several ways to modify x9 record fields. These modification examples assume that you
have loaded an x9 file to the heap using the facilities provided by X9ObjectManager. This is
normally required since changing one x9 record can have impacts on other record types, so having
access to all of the data is generally helpful. However, this is not an absolute requirement, and you
can instead simply modify records during x9 read and write processing. For example, you can use
an X9SdkObject to create an x9object that is not stored but only used for data read and write
operations. You can choose from these alternatives based on your specific requirements.

1) Create an x9 type specific object from an sdkObject or another source of x9 data.
SdkObjects are typically created by X9SdkObjectFactory using X9SdkIO. All field level
modifications will be applied directly to the byte array used to allocate the x9 type specific object:

X9Type01 t01 = new X9Type01(sdkBase, sdkObject.getX9AsciiRecord());
t01.fileIdModifier = “B”;
t01.modify();

2) Create an x9 type specific object from from an x9object and then modify fields. X9objects
are typically created by X9Reader. All field level modifications are applied to the x9ObjData byte
array within the supplied x9object.

X9Type25 t25 = new X9Type25(x9o);
t25.itemSequenceNumber = Long.toString(++itemSequenceNumber);
t25.modify();

3) Create an x9object and then directly modify individual fields directly within the x9object
data byte array, on an offset and length basis using an X9SdkFid accessor. Commonly used
accessor definitions can be found in X9FIDS, and you can create others as needed for your
application. The rules class in these definitions are informational when using get/set and are
directive when using the obtain/assign factory methods in X9SdkFid. X9Objects are typically
created by X9Reader. All field level modifications are applied to the x9ObjData byte array within
the referenced x9object.

private static final X9SdkFid R70_ITEM_COUNT = new X9SdkFid(X9SdkFid.RULES_ANY,
X9.BUNDLE_TRAILER, 2, 4);

R70_ITEM_COUNT.setFieldValue(sdkBase, x9o.x9ObjData,
X9Numeric.getAsString(value, 4));

4) Update all trailer records after a data value has been modified which impacts the counts and
amounts that are present in the bundle trailers, cash letter trailers, and the file control trailer. You
can optionally enable field level logging within X9TrailerManager as part of that constructor (the
default is for that facility to be disabled). When field level logging is enabled, all updated fields
(with before and after values) will be logged through X9ModifyManager, which can be
subsequently used to retrieve all of the modifications that have been applied. Note that this code
assumes that that x9 file has been loaded as x9objects to the heap. X9TrailerManager can also be

Page 45 of 166

X9Utilities User Guide X9Ware LLC

used to accumulate and optionally populate trailer record totals as individual x9 records are
processed on a stream basis (see the next example).

X9TrailerManager x9trailerManager = new X9TrailerManager(sdkBase);
x9trailerManager.updateAllTrailerRecords();

5) X9TrailerManager also has methods that allow you to update the trailers when the x9
records are being directly read and written but have not be loaded to the heap.

/*
 * Accumulate and populate totals within the trailer records.
 */
x9trailerManager.accumulateAndPopulate(recordType, recordFormat,

x9data);

/*
 * Build the 9 record from the current x9data and image.
 */
sdkObject.buildX9FromData(x9data);

/*
 * Write the current sdkObject to the x9 output file.
 */
currentByteCount += sdkIO.writeX9(sdkObject);

6) Replace an image and then update the image lengths in associated record types: The
replacement image is stored within the x9object and will be subsequently used when this x9object
is formatted and written to an output x9 file.

/*
 * Store the replacement image from a provided byte array.
 */
X9Type52Worker x9type52Worker = new X9Type52Worker(sdkBase);
x9o.setReplacementImage(tiffImage);

/*
 * Update the image length in the type 50 and 52 records.
 */
x9type52Worker.updateImageRecordLengths(x9o, tiffImage.length);

Page 46 of 166

X9Utilities User Guide X9Ware LLC

Credits And Trailer TotalsCredits And Trailer Totals

Credits (record type 61) and their impact on trailer records has been one of the more difficult
topics associated with the creation of x9 files. These issues have been addressed with varying
approaches, including the newer x9.100-187-2013 specification, where credit indicators are
included in trailer records to actually define how and if credits are rolled into totals.

Earlier x9 specifications unfortunately are not nearly as clear cut and attempt to deal with the
situation where credits are essentially extensions to those previously standards and not are
incorporated into the base definition and core design.

For many x9 variant specifications, there is really no reason to include credits in trailer totals
whatsoever. The typical image cash letter consists of a credit offset by debits. In this situation,
including the credit amount in the totals records only serves to unnecessarily double the amount
fields. Similarly, there is no absolute need to include the credit in the item counts either, since the
credit record will be accounted for in the total record count in the type 99 file control trailer, so its
presence is tracked by the overall file counters. The basis of this (hopefully logical) position is that
items are defined as record types 25 (forward present) and 26 (returns) and comprise the trailer
record item count totals, while credit record type 61 would be excluded from those totals.

Unfortunately, for some x9 variant definitions, this is not the case.

The X9Ware-SDK has two classes that manage totals. The first is X9TrailerTotals which is
responsible for accumulating an individual set of running totals, where debits and credit counts and
amounts are tracked separately. The second is X9TrailerManager which is responsible for
accumulating, validating, and populating the various totals in the x9 trailer records.
X9TrailerManager keeps separate running totals for each of the levels within an x9 file (batch,
cash letter, and overall file).

X9TrailerManager includes appropriate logic to support for several standards where it is very clear
how credits add into trailer record counts and amounts. This includes the x9.100-187-2013
specification, where a credit indicator totals determines how totals are accumulated and populated,
and x9.100-180, where separate debit and credit counts are physically populated.

However, there are times when this standard X9TrailerManager logic is not sufficient to meet
specific needs. This typically happens when creating an image cash letter that includes credits for
an x9 variant that adds type 61 credit counts and/or amounts into the various trailer records.

X9TrailerManager allows you to provide direction as the impact that credits will have on the
bundle, cash letter, and file control trailer records. These actions can be specified as a group or can
be applied individually to each of the trailer record types. This allows X9TrailerManager to
support even the worst case scenarios, for example when credits are added into the bundle totals
but are not added into the higher level cash letter or file control item totals. Or similarly when

Page 47 of 166

X9Utilities User Guide X9Ware LLC

credits are added into the item count totals at the bundle, cash letter, and file control levels, but are
then not included in the item amount totals. X9TrailerManager can support these (and other)
variations by setting action directives at the appropriate levels.

In order to take control of trailer totals, you must first access the X9TrailerManager instance that is
being used to accumulate and populate your totals.

If your x9 file is being created from directly through X9SdkIO, this is done as follows:

final X9TrailerManaer x9trailerManager = sdkIO.getTrailerManager();

If you x9 file is being created through X9Writer, this can be done as follows:

final X9TrailerManaer x9trailerManager = x9writer.getTrailerManager();

Once you have a reference to the trailer manager, you can now set actions to explicitly identify
how you want your trailer totals accumulated and then populated. The following action codes are
defined within X9TrailerManager:

public static final int CREDITS_DEFAULT_ACTION = 0;
public static final int CREDITS_ADD_TO_COUNT = 1;
public static final int CREDITS_ADD_TO_AMOUNT = 2;
public static final int CREDITS_ADD_TO_COUNT_AND_AMOUNT = 3;

X9TrailerManager then provides the following getters and setters to allow you to provide the
direction needed for your specific requirements:

• get/set CreditsBundleTrailerAction

• get/set CreditsCashLetterTrailerAction

• get/set CreditsFileControlTrailerAction

Page 48 of 166

X9Utilities User Guide X9Ware LLC

Using X9WriterUsing X9Writer

X9Writer is a high level I/O interface which can be used to create an x9 file on an item by item
basis. It includes methods to open the output x9 file, add an item with optional addendums, add
type 68 user records of your design, and to then close the output x9 file. X9Writer can be used to
create ICL (forward presentment) files or ICLR (return item) files.

The power of X9Writer comes from its ability to control the format and and header record values
from either internal or external sources. This design allows an x9 file to be created per the
requirements of the receiving financial institution without having to hard-wire those definitions
within your application program. X9Writer allows these parameters to be assigned from an
external XML file which allows all x9 attributes to be easily defined and manipulated. HeaderXml
control fields various field level formatting and populates values for the file header, cash letter
header, and bundle header records. This facility contained a large number of attributes which
control the overall creation of the output x9 file. HeaderXml values can also be overriden using
setter methods. See the appendix for a full definition of available HeaderXml file content.

You can optionally include addendums using this interface,should you have that requirement.
Individual addendums are created as an array of fields which are added to the item prior to being
written. By attaching the addendums to the item, the addendum count can be queried by X9Writer
and included in the type 25 or type 31 record.

Items can be presented in on of several ways. First you can provide a CSV array of the fields that
explicitly define the new item (eg, an array of fields for a type 25 record). This approach gives you
very detailed control over the x9 item record that is created. A second approach is to populate an
X9Item object and provide that to X9Writer. This can be an easier approach and has the advantage
that X9Item can be directly populated from either an x9object or can be set from your x9 data
including MICR line parse.

X9Writer controls item level batching and totals are automatically accumulated and used to
populate the appropriate records and fields in the x9 trailer records.

Refer to the X9DemoWriter example program which further highlights the use of X9Writer.

Page 49 of 166

X9Utilities User Guide X9Ware LLC

X9Ware-SDK Code ExamplesX9Ware-SDK Code Examples

Our X9Ware-SDK examples are designed to show common use cases, but cannot cover the myriad
of things that can be performed by our X9Ware-SDK. You can review the X9Ware-SDK API to get
a feeling for the large number of classes and methods that are available. It would be impossible to
provide code examples for all of the operations and variations that can be performed by the
X9Ware-SDK. Our X9Assist application is a real world example of the types of things that can be
done by the X9Ware-SDK, since it is built directly on top of the X9Ware-SDK and is an excellent
illustration of what can be done. To this end, we have published the actual source code to our
X9Utilities product, which is similarly built on top of the X9Ware-SDK. Please take a close look at
both our SDK examples and the X9Utilities source code, since together they provide good insight
into the overall capabilities. However, if you need to solve a specific issue that is not represented
by these examples, please contact us and let us know exactly what you need. In those cases, we
may provide you a code snippet that addresses your specific requirement, expand one of our
existing X9Ware-SDK examples to demonstrate your need, or perhaps even develop and publish a
new X9Ware-SDK example program that fully satisfies the requested capability. Our goal is to
ensure that there are adequate examples to allow the X9Ware-SDK to be fully reviewed, and we
believe that these actions will be helpful for both prospective and current customers.

The X9Ware website and the X9Ware-SDK distribution packages include source code for various
X9Ware-SDK examples. You should review these since they provide examples of coding solutions
for common user functions. We would be glad to extend these examples to address your specific
questions. There are two source code samples:

• The first is a zip package of our X9Ware-SDK example programs. These samples are
working programs and can be reviewed in combination with the X9Ware-SDK JavaDoc
that is available as part of our X9Ware-SDK Documentation. We strive to make our
examples package as complete as possible. Please provide comments on possible additions
and improvements.

• The second is a zip package of our X9Utilities source code. X9Ware has made this source
code public knowing that a complete X9Ware-SDK based application will be helpful. This
source represents the actual production version of our X9Utilities product. These are not
just theoretical examples, but the actual working source code for X9Utilities that will be
updated with each release as they are published. We believe that this source may well be
the best example of the X9Ware-SDK, since our design goal for X9Utilities is to reference
and leverage functionality that is implemented within the X9Ware-SDK. Hence the
technical approach has been to minimize code within X9Utilities by pushing as much of the
implementation as possible into the core X9Ware-SDK. You will see this in the X9Utilities
source code, where the design thus allows those core X9Ware-SDK classes to be
incorporated in your applications.

Number Java Example Description

1 X9DemoWriter X9DemoWriter is an example of our x9writer technology,
which is the easiest way to create to create an x9.37 file. This
specific example reads an input CSV file to obtain the items

Page 50 of 166

X9Utilities User Guide X9Ware LLC

Number Java Example Description

which will be written as x9. X9DemoWriter achieves this
high level of simplification by defining the attributes of the
x9 file to be created in what we call the headerXml file. In
this way, the application program only needs to be concerned
with the logical items to be written, making x9writer
responsible for all other details. The headerXml file
identifies the x9.37 specification to be created, along with
other complex topics such as addenda creation, image
attachment, and optional credit insertion. This design
becomes especially advantageous when creating files for
multiple financial institutions, since it allows your
application program to work on a logical item basis. This
means that you application program can build x9.37 files for
any financial institution, regardless of format, with
absolutely no changes to your program. HeaderXml has
100+ parameters that define the contents of the x9 header
records (file header, cash letter header, and bundle
header),bundling of items, and the many unusual
requirements that must be satisfied. X9Writer is responsible
for the actual creation of all record types.

2 X9ConstructX9 X9ConstructX9 is an alternative to X9DemoWriter. The
output x9 file is written on a record by record basis, with
(almost) all records formatted explicitly within the program
itself. Although this provides complete control over each
individual record that is written, this approach is much more
complex. It is our recommendation that you should instead
work at the logical as demonstrated by X9DemoWriter. The
X9ConstructX9 still takes advantage of several core
components of our X9Ware-SDK. First is that it uses the
x9factory to populate fields based on the selected x9
specification (for example x9.37 DSTU, x9.100-187-2008,
etc). This means that you can provide values for logical
fields for all fields that exist in a certain record type, even
when the specification that you have selected may only
require a subset of those fields. Second is that it allows the
X9Ware-SDK to calculate and populate content of all trailer
records (batch trailer, cash letter trailer, and file trailer)
subject to data content and the x9 specification that is being
used.

3 X9ConstructAch X9ConstructAch is an example of our achWriter technology,
which allows ACH files to be created at a very high level
(similar to our approach of using x9writer for creation of
x9.37 files). X9ConstructAch specifically reads an x9.37 file
to get logical items that are then written as an ACH file. Use

Page 51 of 166

X9Utilities User Guide X9Ware LLC

Number Java Example Description

of achWriter allows the output file to be written as any
desired Standard Entry Class (SEC). AchWriter also supports
the attachment of needed addenda records, subject to the
current entry class. AchWriter provided automatic batching
and will reorder input as needed to allow transactions to be
grouped within batches by entry class. AchWriter also
computes hash totals and appends nines records as required
to pad the output file as required by ACH standards.

4 X9VerifyX9 X9VerifyX9 is an extensive example of how to perform a
variety of functions against an existing x9.37 file. The file is
first loaded into x9objects that are stored using our object
manager. It then runs our validation process against the file,
in the same manner that would be done by our X9Assist
desktop program. Any identified errors are written to the
system log. Totals are accumulated for all debits and credits
within the file and are summarized to the log Various record
types are listed to the log. Several records are both modified
and deleted. The result is then written to a new output file,
with the trailer records recalculated based on the
modifications that have been made.

5 X9VerifyAch X9VerifyAch is an extensive example of how to perform a
variety of functions against an existing ach file. The file is
first loaded into x9objects that are stored using our object
manager. It then runs our validation process against the file,
in the same manner that would be done by our X9Assist
desktop program. Any identified errors are written to the
system log. Totals are accumulated for all debits and credits
within the file and are summarized to the log Various record
types are listed to the log. Several records are both modified
and deleted. The result is then written to a new output file,
with the trailer records recalculated based on the
modifications that have been made.

6 X9ReformatX9 X9ReformatX9 is an example of reading an input x9.37 file
to get logical items which are then written using x9writer.
This is a very powerful example because it allows the items
to be extracted and then rewritten by the application
program. By using x9writer, the output x9.37 file can be
written in a different x9 specification than the input, and it
would similarly allow an offsetting credit to be either
removed or added. Finally, it would be possible to modify
the items in some manner (if needed) between input and
output. This approach may be application to many use case
scenarios.

Page 52 of 166

X9Utilities User Guide X9Ware LLC

Number Java Example Description

7 X9ModifyX9 X9ModifyX9 is an example of reading an x9 file, applying
modifications, and then writing that output to another
external x9 file. The example is based on an input file which
is modified and written directly to the output file.

8 X9ReadX9AsItems X9ReadX9AsItems is a static class which reads an input
x9.37 file and loads the items into an array list. This is
common functionality utilized by several other X9Ware-
SDK example programs.

9 X9DrawImage X9DrawImage is a demo of creating front and back images
dynamically using our drawing tools. Images are created
using a template which you can define based on your
requirements using a tool of your choosing such as GIMP,
Paint, or Photoshop. Templates are stored in our template
library in a common image format such as PNG. The
X9Ware-SDK drawing tools allow you to add various fields
to each created image such as name/address, payee, memo,
signature, date, check number, MICR line, and so forth.
Once created, the images can be converted to standard
x9.100-181 exchange format.

10 X9ReadCsvWriteX9 X9ReadCsvWriteX9 will read a csv file with corresponding
images for each item stored in an associated image folder.
The data and images are then used to create x9 records
which are written to an x9 output file. X9Ware-SDK
methods are used which would allow the csv input records to
be examined or modified as the x9 file is created and written.

11 X9ReadX9ByRecordType X9ReadX9ByRecordType will read an x9 file and use type
objects to map and retrieve the specific fields as defined at
the x9 record type level. Note that the field level classes also
support modify, so they can be used to modify individual
fields and create a modified x9 file.

12 X9ReadX9WriteCsv X9ReadX9ByRecordType will read an x9 file and use type
objects to map and retrieve the specific fields as defined at
the x9 record type level. Note that the field level classes also
support modify, so they can be used to modify individual
fields and create a modified x9 file.

13 X9ReadX9WriteX9 X9ReadX9WriteX9 will read an x9 file and create an output
x9 file with associated images. This is a good example of
reading an x9 file which is then loaded to resident x9objects.
All fields within each record are examined using walk. This
example could be easily extended to allow individual fields
to be modified as needed. The possibly modified x9 file is
written from the resident x9objects array.

Page 53 of 166

X9Utilities User Guide X9Ware LLC

Number Java Example Description

14 X9DemoWriterThreaded X9DemoWriterThreaded provides a sample of running
x9writer in a multi-threaded environment, where twenty (20)
files are created in parallel. It provides insight into how the
X9Ware-SDK can be run across concurrent threads, and also
shows the power of the X9Ware-SDK to run in a high
volume production environment. As a demonstration of
X9Ware-SDK, this sample program runs in less then 30
seconds when creating twenty files with 5,000 items each, on
a Dell laptop with the images stored on a local SSD.

15 X9MakeX9 X9MakeX9 is an example of the make process which reads a
use case file (which must be in CSV format) and creates an
output x9 file. An xml reformatter is loaded which defines
the make parameters. This xml file can be created, tested,
and maintained using X9Assist.

16 X9GenerateX9 X9GenerateX9 is an example of the generate process which
reads a CSV file that contains generate specific columns and
creates an output x9 file. The column requirements may vary
from release to release and are logged as information. An
xml generator is loaded which defines the generate
parameters. This xml file can be created, tested, and
maintained using X9Assist.

17 X9ScrubX9 X9ScrubX9 is an example of the scrub process which reads
an x9 file and creates a scrubbed x9 output file. An xml
scrub configuration is loaded which defines the scrub
parameters to be applied. This xml file can be created, tested,
and maintained using X9Assist.

18 X9PrintX9 X9PrintX9 is an example of the image print process which
reads an x9 file and creates an image print stream which is
routed to a selected printer. The example includes either
interactive print (where a GUI dialog is invoked to select the
printer) or silent print (where output is written to a specific
printer). An xml print configuration is loaded which defines
the print parameters. This xml file can be created, tested, and
maintained using X9Assist.

19 X9PaidEndorsement X9PaidEndorsement is an example of adding a paid
endorsement stamp to a back side image by using
X9DrawTools. The paid endorsement stamp is a series of
text lines that are drawn on the image rotated 90 and
centered within the image. Placement is based on a right side
margin that is specified in inches. The paid endorsement
stamp can be a variable number of lines with each having a
define font, style, and size.

Page 54 of 166

X9Utilities User Guide X9Ware LLC

Number Java Example Description

20 X9Utilities X9Ware has made this source code public knowing that a
complete X9Ware-SDK based application will be helpful.
This source represents the actual production version of our
X9Utilities product. These are not just theoretical examples,
but the actual working source code for X9Utilities that will
be updated with each release as they are published. We
believe that this source may well be the best example of our
X9Ware-SDK, since our design goal for X9Utilities is to
reference and leverage functionality that is implemented
within the X9Ware-SDK.

Page 55 of 166

X9Utilities User Guide X9Ware LLC

Rules OverviewRules Overview

X9Ware LLC has developed a very powerful and what we believe to be a very unique rules engine
that can be used to document and then validate the format of X9.37, ACH, and CPA005 files. The
format of these rule definitions are proprietary to X9Ware and are the result of substantial ongoing
design and improvement. This documentation is confidential to X9Ware and can only be shared
within an organization that has established a non-disclosure agreement (NDA) with X9Ware.
Please do not share this information outside of your organization. Any other use, including reverse
engineering into other formats for other purposes, is expressly prohibited.

This documentation is offered by X9Ware to provide insight into the usage of our rules based
technologies. Customers can use this information to leverage the X9Ware rules engine to validate
your internal x9 variants. As part of Extended Support, X9Ware provides the needed assistance to
allow your organization to implement validation of your x9 variants using our rules engine.

Rules are loaded and evaluated dynamically by the X9Ware-SDK. There is no need to run any
utilities to evaluate and populate the rules. Descriptive error messages will be issued by the
X9Ware-SDK if there are errors within a rules specification.

The mention of “x9” below applies equally to all file dialects that are supported with the SDK
(X9.37, ACH, and CPA005). The X9 rules engine implements the following proprietary design
principles:

• An x9 specification can be either a basis or an extension document.

• An x9 basis defines a core x9 specification.

• An x9 extension defines a new x9 specification that is built upon a defined base. Only the
differences need to be defined. This approach substantially reduces ongoing maintenance,
since a change basis is automatically applied to any defined extensions. It also allows you
to quickly and easily understand what is different in the extension specifications.

• Each x9 specification has a set of x9 controls which define the high level attributes
associated with the x9 rules. For example, the x9 controls might indicate if the allowable
character set is “Ebcdic”, “Ascii”, or “either”.

• An x9 base specification must contain an x9controls definition and need only define those
values that vary from the system defaults.

• An x9 extension specification must contain an x9controls definition and need only define
those values that vary from the base specification.

• The x9 specification is defined as consisting of a series of x9 record types.

• Each x9 record is defined as consisting of a series of x9 fields.

• Each x9field is defined with its specific attributes and validation criteria.
Page 56 of 166

X9Utilities User Guide X9Ware LLC

The TIFF rules engine similarly implements the following proprietary design principles:

• Each TIFF specification has a set of TIFF controls which define the high level attributes
associated with the TIFF rules. For example, the TIFF controls might indicate that
duplicate tags are accepted or are not accepted.

• Each TIFF specification can have separate set of TIFF rules for Black White versus Gray
Scale images.

• Each set of TIFF rules contains a list of TIFF edits that are applied to tags when they are
present within an image.

• Each set of TIFF rules contains a list of TIFF tags that are mandatory for each image.

• The TIFF specification contains a list of descriptions of all possible tags that can be present
across all images within the x9 file.

Page 57 of 166

X9Utilities User Guide X9Ware LLC

X9 ConfigurationsX9 Configurations

An X9 configuration defines the components that, when taken as a group, define the validations
that will be applied to the x9 file. A list of standard configurations are defined internally within the
X9Ware-SDK and can be defined externally as config.xml within the “xml” folder.

Every configuration consists of the following elements:

Configuration name Your assigned configuration name.

X9 rules file Contains a list of the rules that are applied to the records and fields within
the currently loaded file. These rules are used to identify and format the
associated error messages.

Tiffrules file Contains a list of the rules that are applied to the tiff images within the x9
file. These rules are used to generate image related errors.

Messages file Contains a list of the error messages and their associated severity levels.
These rules are used to assign the severity level of the errors that are
generated during the validation process. Each error has an assigned
severity level of Error, Warn, Info, or OK.

Entry Type Defines the configuration as either “System” or “User”. System entries
are automatically defined within the X9Assist environment and cannot be
modified by the user. User entries can be created using the Configuration
Editor and will be automatically retained across user sessions and
X9Assist release installations.

Custom configuration entries can be defined within the external config.xml definition or can be
directly populated at run time into the configuration map.

X9ConfigManager defines the standard (system) configuration map as follows:

addMapEntry(X9.X9_100_187_2008_CONFIG,
"x9rules_x9.100-187.xml",
TIFFRULES_100_187_2014, MESSAGES, X9C.SYSTEM);

addMapEntry(X9.X9_100_187_UCD_2008_CONFIG,
"x9rules_x9.100-187_UCD.xml",
TIFFRULES_100_187_2014, MESSAGES, X9C.SYSTEM);

addMapEntry(X9.X9_100_187_2013_CONFIG,
"x9rules_x9.100-187-2013.xml",
TIFFRULES_100_187_2014, MESSAGES, X9C.SYSTEM);

addMapEntry(X9.X9_100_187_UCD_2013_CONFIG,
"x9rules_x9.100-187_UCD-2013.xml",
TIFFRULES_100_187_2014, MESSAGES, X9C.SYSTEM);

addMapEntry(X9.X9_37_CONFIG,
"x9rules_x937.xml",
TIFFRULES, MESSAGES, X9C.SYSTEM);

Page 58 of 166

X9Utilities User Guide X9Ware LLC

addMapEntry(X9.X9_CPA_015_CONFIG,
"x9rules_x9.100-187_CCD.xml",
TIFFRULES_100_187_2014, MESSAGES, X9C.SYSTEM);

addMapEntry(X9.X9_EC_ACH_CONFIG,
"x9rules_eastCaribbeanAch.xml",
TIFFRULES, MESSAGES, X9C.SYSTEM);

addMapEntry(X9.X9_EEX_CONFIG,
"x9rules_eex.xml",
TIFFRULES, MESSAGES, X9C.SYSTEM);

addMapEntry(X9.X9_FRB_CONFIG,
"x9rules_frb.xml",
TIFFRULES_FRB, MESSAGES, X9C.SYSTEM);

addMapEntry(X9.X9_SVPCO_CONFIG,
"x9rules_svpco.xml",
TIFFRULES_100_187_2014, MESSAGES, X9C.SYSTEM);

addMapEntry(X9.X9_VIEWPOINTE_CONFIG,
"x9rules_viewpointe.xml",
TIFFRULES_100_187_2014, MESSAGES, X9C.SYSTEM);

The configuration is stored within a TreeMap. Custom entries can be dynamically added to this
map using addMapEntry. X9Ware-SDK implementations need to consider their approach for
custom entries as being either externally loaded or internally supplied. Some considerations are as
follows:

• X9ConfigLoader should only be provided the base name (with the extension) for the
x9rules, tiff rules, and messages. It does not accept a fully qualified path. This is because
the Configuration Loader utilizes a multi-step load process that first looks at embedded
resources within the X9Ware-SDK JAR, and then defers to external resources. By going to
embedded resources first, the X9Ware-SDK can be fully self defining and not dependent on
the file system.

• When rules are not found as embedded JAR resources, the Configuration Loader then uses
the provided base name to construct a file reference within the program launch folder. That
reference will become / program launch folder / rules / x9rules / rules-file-name.xml. The
rules can alternatively be stored in the application home folder, which would be / home
folder / rules / x9rules / rules-file-name.xml.

• You can determine the launch and home folder names, because they are logged by the
X9Ware-X9Ware-SDK during startup.

• Your new configuration name should be added after your X9Ware-SDK applcation has
loaded the standard xml configuration files (X9SdkRoot.loadXmlConfigurationFiles())
but before the bind is issued.

• Your new configuration should also be added as SYSTEM and not USER. This is because
your configuration would be user defined and not part of our internally defined rule sets.

• Your bind must reference the newly defined configuration name.
• If you store the rules in the file system, we highly suggest that you create your own

qualified reference to the rules themselves, and do an “isFile()” to ensure that the rules
exist as expected. You would abort if the rules are not found. You can also use our utility
method X9FileUtils.existsWithPathTracing() to check if the rules exist, which provides
some additional tracing when the file location is not found.

Page 59 of 166

X9Utilities User Guide X9Ware LLC

• Finally, an alternative is to use the Java standard utility “jar -uf” to add your rule definitions
to the X9Ware-SDK JAR itself, which makes your rules self defining, thus eliminating the
needed to store the rules within the file system.

Page 60 of 166

X9Utilities User Guide X9Ware LLC

X9 RulesX9 Rules

An X9 base specification contains the following XML definitions:

Xml Definition Usage Notes

x9Controls Defines the x9 controls (attributes) that are to be
applied to this x9 specification.

Each control value will be
assigned its default value when
otherwise omitted.

records Defines a list of x9 records that comprise this
x9 specification.

Required.

record Defines an individual x9 record and its
associated attributes and fields.

Required.

field Defined an individual x9 field and its associated
attributes.

Required.

An X9 extension specification contains the following XML definitions:

Xml Definition Usage Notes

x9Controls Defines the x9 controls (attributes) that are to be
applied to this x9 specification.

Each control value will default
to the value defined at the basis
level when otherwise omitted.

basis Defines the base document against which this
specification is being applied. The presence of
the the basis XML definition is used to identify
a base versus extension x9 specification.

Required.

overrides Defines a list of x9 records that are applied as
overrides against the base specification.

Required.

record Defines an individual x9 record and its
associated attributes and fields. Only the fields
that are different (when compared to the base)
must be defined.

Required.

Page 61 of 166

X9Utilities User Guide X9Ware LLC

field Defined an individual x9 field and its associated
attributes.

Required.

X9 Rules – Base Specification Example

The following is an example of an X9 base specification. Note that all controls, record types, and
fields are defined.

<?xml version="1.0" encoding="UTF-8"?>
<x9rules>

 <x9Controls>
 <x9Specification>DSTU 2003</x9Specification>
 <characterSet>either</characterSet>
 <maximumFileSize>0</maximumFileSize>
 <fieldZeroPresence>optional</fieldZeroPresence>
 <fieldZeroFormat>bigEndian</fieldZeroFormat>

<dateMinimumYear>1993</dateMinimumYear>
<dateMaximumYear>2099</dateMaximumYear>
<dateWindowMinusDays>1095</dateWindowMinusDays>
<dateWindowPlusDays>95</dateWindowPlusDays>

 <userFieldsValidated>true</userFieldsValidated>
 <reservedFieldsValidated>true</reservedFieldsValidated>
 <multipleLogicalFilesAllowed>false</multipleLogicalFilesAllowed>
 <iclCollectionTypes>=00|01|02|12</iclCollectionTypes>
 <iclRecordTypeIndicators>=E|I|F</iclRecordTypeIndicators>
 <iclrCollectionTypes>=03|04|05|06</iclrCollectionTypes>
 <iclrRecordTypeIndicators>=E|I|F</iclrRecordTypeIndicators>
 </x9Controls>

 <records>

 <x9record>
 <type>00</type>
 <format>0</format>
 <name>Invalid Record Type</name>
 <length>f80</length>
 <field> <item>x00.01-p001-l002-mandatory-notModifiable</item>
 <edit>n</edit>
 <name>Record Type</name> </field>
 <field> <item>x00.02-p003-l078-mandatory-modifiable</item>
 <edit>none</edit>
 <name>Reserved</name> </field>
 </x9record>

Page 62 of 166

X9Utilities User Guide X9Ware LLC

 <x9record>
 <type>01</type>
 <format>0</format>
 <name>File Header Record</name>
 <length>f80</length>
 <field> <item>x01.01-p001-l002-mandatory-notModifiable</item>
 <edit>n</edit>
 <name>Record Type</name> </field>
 <field> <item>x01.02-p003-l002-mandatory-modifiable</item>
 <edit>n</edit>
 <values>=1|2|3</values>
 <name>Standard Level</name> </field>
 <field> <item>x01.03-p005-l001-mandatory-modifiable</item>
 <edit>a</edit>
 <values>=P|T</values>
 <name>Test File Indicator</name> </field>
 <field> <item>x01.04-p006-l009-mandatory-modifiable</item>
 <edit>n</edit>
 <name>Immediate Destination Routing Number</name> </field>
 <field> <item>x01.05-p015-l009-mandatory-modifiable</item>
 <edit>n</edit>
 <name>Immediate Origin Routing Number</name> </field>
 <field> <item>x01.06-p024-l008-mandatory-modifiable</item>
 <edit>yyyymmdd</edit>
 <name>File Creation Date</name> </field>
 <field> <item>x01.07-p032-l004-mandatory-modifiable</item>
 <edit>Timehhmm</edit>
 <name>File Creation Time</name> </field>
 <field> <item>x01.08-p036-l001-mandatory-modifiable</item>
 <edit>a</edit>
 <values>=Y|N</values>
 <name>Resend Indicator</name> </field>
 <field> <item>x01.09-p037-l018-conditional-modifiable</item>
 <edit>ans</edit>
 <name>Immediate Destination Name</name> </field>
 <field> <item>x01.10-p055-l018-conditional-modifiable</item>
 <edit>ans</edit>
 <name>Immediate Origin Name</name> </field>
 <field> <item>x01.11-p073-l001-conditional-modifiable</item>
 <edit>an</edit>
 <name>File ID Modifier</name> </field>
 <field> <item>x01.12-p074-l002-conditional-modifiable</item>
 <edit>a</edit>
 <name>Country Code</name> </field>
 <field> <item>x01.13-p076-l004-conditional-modifiable</item>
 <edit>ans</edit>
 <name>User Field</name> </field>
 <field> <item>x01.14-p080-l001-mandatory-modifiable</item>

Page 63 of 166

X9Utilities User Guide X9Ware LLC

 <edit>b</edit>
 <name>Reserved</name> </field>
 </x9record>

....

....

....

....

 <x9record>
 <type>99</type>
 <format>0</format>
 <name>File Control Record</name>
 <length>f80</length>
 <field> <item>x99.01-p001-l002-mandatory-notModifiable</item>
 <edit>n</edit>
 <name>Record Type</name> </field>
 <field> <item>x99.02-p003-l006-mandatory-modifiable</item>
 <edit>n</edit>
 <edit>CashLetterCount</edit>
 <name>Cash Letter Count</name> </field>
 <field> <item>x99.03-p009-l008-mandatory-modifiable</item>
 <edit>n</edit>
 <edit>TotalRecordCount</edit>
 <name>Total Record Count</name> </field>
 <field> <item>x99.04-p017-l008-mandatory-modifiable</item>
 <edit>n</edit>
 <edit>TotalItemCount/0</edit>
 <name>Total Item Count</name> </field>
 <field> <item>x99.05-p025-l016-mandatory-modifiable</item>
 <edit>n</edit>
 <edit>TotalFileAmount</edit>
 <name>Total File Amount</name> </field>
 <field> <item>x99.06-p041-l014-conditional-modifiable</item>
 <edit>ans</edit>
 <name>Immediate Origin Contact Name</name> </field>
 <field> <item>x99.07-p055-l010-conditional-modifiable</item>
 <edit>n</edit>
 <name>Immediate Origin Contact Phone Number</name> </field>
 <field> <item>x99.08-p065-l016-mandatory-modifiable</item>
 <edit>b</edit>
 <name>Reserved</name> </field>
 </x9record>

 </records>

</x9rules>

Page 64 of 166

X9Utilities User Guide X9Ware LLC

X9 Rules – Extension Specification Example
<?xml version="1.0" encoding="UTF-8"?>
<x9rules>

 <x9Controls>
 <x9Specification>FRB 2003</x9Specification>
 <characterSet>Ebcdic</characterSet>
 <maximumFileSize>2048</maximumFileSize>
 <fieldZeroPresence>required</fieldZeroPresence>
 <userFieldsValidated>false</userFieldsValidated>
 <reservedFieldsValidated>false</reservedFieldsValidated>
 </x9Controls>

 <basis>
 <base>x9rules_dstu_2003.xml</base>
 </basis>

 <overrides>

 <x9record>
 <type>01</type>
 <format>0</format>
 <name>File Header Record</name>
 <length>f80</length>
 <field> <item>x01.01-p001-l002-mandatory-notModifiable</item>
 <edit>n</edit>
 <name>Record Type</name> </field>
 <field> <item>x01.02-p003-l002-mandatory-modifiable</item>
 <edit>n</edit>
 <values>=3</values>
 <name>Standard Level</name> </field>
 <field> <item>x01.08-p036-l001-mandatory-modifiable</item>
 <edit>a</edit>
 <values>=N</values>
 <name>Resend Indicator</name> </field>
 </x9record>

 <x9record>
 <type>10</type>
 <format>0</format>
 <name>Cash Letter Header Record</name>
 <length>f80</length>
 <field> <item>x10.02-p003-l002-mandatory-modifiable</item>
 <edit>n</edit>
 <values>=1|2|3</values>
 <name>Collection Type Indicator</name> </field>
 <field> <item>x10.08-p043-l001-mandatory-modifiable</item>

Page 65 of 166

X9Utilities User Guide X9Ware LLC

 <edit>a</edit>
 <values>=I</values>
 <name>Cash Letter Record Type Indicator</name> </field>
 <field> <item>x10.09-p044-l001-conditional-modifiable</item>
 <edit>an</edit>
 <values>=G</values>
 <name>Cash Letter Documentation Type Indicator</name> </field>
 <field> <item>x10.10-p045-l008-conditional-modifiable</item>
 <edit>an</edit>
 <edit>CashLetterIdIsUnique</edit>
 <name>Cash Letter ID</name> </field>
 <field> <item>x10.13-p077-l001-conditional-modifiable</item>
 <edit>an</edit>
 <values>=A|B|C|D|H|I|J|K|L|M|N|R|S|X|1|3|7|8</values>
 <name>Fed Work Type</name> </field>
 </x9record>

 <x9record>
 <type>20</type>
 <format>0</format>
 <name>Bundle Header Record</name>
 <length>f80</length>
 <field> <item>x20.02-p003-l002-mandatory-modifiable</item>
 <edit>n</edit>
 <values>=1|3</values>
 <name>Collection Type Indicator</name> </field>
 <field> <item>x20.10-p055-l009-conditional-modifiable</item>
 <edit>n</edit>
 <validate>false</validate>
 <name>Return Location Routing Number</name> </field>
 </x9record>

 <x9record>
 <type>25</type>
 <format>0</format>
 <name>Check Detail Record</name>
 <length>f80</length>
 <field> <item>x25.09-p073-l001-conditional-modifiable</item>
 <edit>an</edit>

<values>=G</values>
 <name>Documentation Type Indicator</name> </field>
 </x9record>

 <x9record>
 <type>28</type>
 <format>0</format>
 <name>Check Detail Addendum C Record</name>
 <length>f80</length>

Page 66 of 166

X9Utilities User Guide X9Ware LLC

 <field> <item>x28.09-p040-l001-conditional-modifiable</item>
 <edit>an</edit>

<values>=A|B|C|D|E|F|G|H|I|J|K|L|M|N|P|Q|R|S|T|W|X</values>
 <name>Return Reason</name> </field>
 </x9record>

 <x9record>
 <type>31</type>
 <format>0</format>
 <name>Return Record</name>
 <length>f80</length>
 <field> <item>x31.06-p042-l001-conditional-modifiable</item>
 <edit>an</edit>

<values>=A|B|C|D|E|F|G|H|I|J|K|L|M|N|P|Q|R|S|T|W|X</values>
 <name>Return Reason</name> </field>
 <field> <item>x31.08-p045-l001-conditional-modifiable</item>
 <edit>an</edit>
 <validate>false</validate>
 <name>Return Documentation Type Indicator</name> </field>
 </x9record>

<x9record>
 <type>35</type>
 <format>0</format>
 <name>Return Addendum D Record</name>
 <length>f80</length>
 <field> <item>x35.09-p040-l001-conditional-modifiable</item>

<edit>an</edit>
 <edit>CompareLastAddendumReturnReasonToItem</edit>

 <values>=A|B|C|D|E|F|G|H|I|J|K|L|M|N|P|Q|R|S|T|W|X</values>
 <name>Return Reason</name> </field>
 </x9record>

 <x9record>
 <type>40</type>
 <format>0</format>
 <name>Account Totals Detail Record</name>
 <length>f80</length>
 <allowed>false</allowed>
 </x9record>

 <x9record>
 <type>41</type>
 <format>0</format>
 <name>Non-Hit Totals Detail Record</name>

Page 67 of 166

X9Utilities User Guide X9Ware LLC

 <length>f80</length>
 <allowed>false</allowed>
 </x9record>

 <x9record>
 <type>50</type>
 <format>0</format>
 <name>Image View Detail Record</name>
 <length>f80</length>
 <field> <item>x50.02-p003-l001-mandatory-modifiable</item>
 <edit>n</edit>
 <values>=0|1</values>
 <name>Image Indicator</name> </field>
 <field> <item>x50.05-p021-l002-mandatory-modifiable</item>
 <edit>nb</edit>
 <values>=0</values>
 <name>Image View Format Indicator</name> </field>
 <field> <item>x50.06-p023-l002-mandatory-modifiable</item>
 <edit>nb</edit>
 <values>=00</values>
 <name>Image Compression Algorithm Indicator</name> </field>

 <field> <item>x50.09-p033-l002-mandatory-modifiable</item>
 <edit>n</edit>
 <values>=0</values>
 <name>View Descriptor</name> </field>
 <field> <item>x50.10-p035-l001-mandatory-modifiable</item>
 <edit>nb</edit>
 <values>=0</values>
 <name>Digital Signature Indicator</name> </field>
 </x9record>

 <x9record>
 <type>52</type>
 <format>0</format>
 <name>Image View Data Record</name>
 <length>v117</length>
 <field> <item>x52.09-p085-l001-mandatory-modifiable</item>
 <edit>nb</edit>
 <values>=0</values>
 <name>Clipping Origin</name> </field>
 <field> <item>x52.18-p000-l007-mandatory-notModifiable</item>
 <edit>nb</edit>
 <edit>MinimumImageLength/250</edit>
 <edit>MaximumImageLength/200000</edit>
 <edit>MaximumCombinedImageLength/400000</edit>
 <edit>CompareToImageDetailImageLength</edit>
 <edit>CompareToImageDetailImageIndicator</edit>

Page 68 of 166

X9Utilities User Guide X9Ware LLC

 <edit>ImagePresenceBasedOnDocType</edit>
 <variableLengthDescriptor>true</variableLengthDescriptor>
 <name>Length of Image Data</name> </field>
 </x9record>

 <x9record>
 <type>75</type>
 <format>0</format>
 <name>Box Summary Record</name>
 <length>f80</length>
 <allowed>false</allowed>
 </x9record>

 <x9record>
 <type>85</type>
 <format>0</format>
 <name>Routing Number Summary Record</name>
 <length>f80</length>
 <allowed>false</allowed>
 </x9record>

 </overrides>

</x9rules>

Page 69 of 166

X9 Rules – X9Controls

X9Controls defines the high level attributes of a given x9 specification. Each attribute has a key word,
allowable values, and a default value. X9Controls can be assigned at the base level and then overridden
by an extension specification.

Each x9 rules definition will assign an x9 specification name that should be assigned uniquely. This
name can be user defined but it is important that the name be assigned to allow the underlying x9
specification to be identified when that is desired. This is done by embedding an identifier within the
x9specification name as follows:

Setting Associated Specification

2003 This x9 specification is associated with DSTU 2003.

100-187 This x9 specification is associated with any of the x9.100-187
standards or variants.

100-187-2008 This x9 specification is associated with any of the x9.100-187-2008
standards or variants.

100-187-2013 This x9 specification is associated with any of the x9.100-187-2013
standards or variants.

100-187-2016 This x9 specification is associated with any of the x9.100-187-2016
standards or variants.

100-180 This x9 specification is associated with any of the x9.100-180
standards or variants.

100-180-2006 This x9 specification is associated with any of the x9.100-180-2006
standards or variants.

100-180-2013 This x9 specification is associated with any of the x9.100-180-2013
standards or variants.

UCD This x9 specification is associated with any of the UCD variants.

CPA This x9 specification is associated with CPA-015.

X9 Controls attributes are as follows:

Attribute Keyword Usage Values Default

mode Specification mode. x9 or ach. x9.

Attribute Keyword Usage Values Default

x9Specification The logical name assigned to
this x9 specification. The
associated specification should
be identified as part of this
name assignment. For
example, a value of “MyBank
2008” would indicate that this
specification is intended to be a
variant of the the x9.100-187-
2008 standard.

Required.

fileNameValidation File name validation rule to be
applied to the current file
name. This rule can be used in
those situations where the
input file name must be
provided in very specific
formats. This validation rule is
defined in “rule/arg” format,
where the rule indicates the
internal rule which is to be
executed and the argument is
applied against that rule.

“value/
requiredValue”
which is used when
the file name is
constant and must
batch the indicated
value.

“regex/pattern”
which is used when
the file name must
match a provided
RegEx validation
pattern.

“cpa015/” which is
used when the file
name must match
the CPA015 pattern
requirements.

none

maximumFileSizeInMB Maximum x9 file size in MB; a
value of zero indicates that
there is no limit.

Positive integer. 0

characterSet Allowable character sets that
can be used to express data. A
given file can only utilize a
single character set which is
identified and assigned based
on the first x9 record within

Ebcdic, Ascii,either. Ebcdic

Attribute Keyword Usage Values Default

the file.

fieldZeroPresence Determines if field zero
lengths (which identify the
length of each x9 record) are
required.

required, optional,
prohibited.

required

fieldZeroFormat Format used to define field
zero. Note that bigEndian is
the standard that has been
applied to all x9 specifications.

bigEndian,
littleEndian, either.

bigEndian

lineBreaks Determines if line breaks
(CRLF sequences) are allowed
in NACHA files, where their
presence is recognized as
optional per industry standards.

required, optional,
prohibited.

optional

padRecords Determines if pad records
(which appear at the end of the
file) are required in NACHA
files, where their presence is
recognized as required per
industry standards.

required, optional,
prohibited.

required

dateMinimumYear Minimum year that can appear
in a date field. This validation
can help to identify invalidate
dates that otherwise appear
valid. A value of zero disables
minimum YYYY validation.

Positive integer. 0

dateMaximumYear Maximum year that can appear
in a date field. This validation
can help to identify invalidate
dates that otherwise appear
valid. A value of zero disables
maximum YYYY validation.

Positive integer. 0

dateWindowMinusDays The number of days that are
subtracted from the current
date to determine the minimum

Positive integer. 0

Attribute Keyword Usage Values Default

allowable value that can be
present in a date field. A value
of zero disables minimum date
validation.

dateWindowPlusDays The number of days that are
added to the current date to
determine the minimum
allowable value that can be
present in a date field. A value
of zero disables maximum date
validation.

Positive integer. 0

userFieldsValidated Determines if user field
validation for blanks will be
applied for those x9
specifications that have defined
this specific edit rule;
otherwise not applicable.

true, false. true

reservedFieldsValidated Determines if reserved field
validation for blanks will be
applied for those x9
specifications that have defined
this specific edit rule;
otherwise not applicable.

true, false. true

applyFieldValidations Determines if all defined field
validations within this rule set
will actually be applied to the
incoming x9 data. Enabling
this option allows this
specification to be used to test
for structural integrity without
actually performing individual
field validations.

true, false. true

isRequiredFieldsAreMandatory Determines if required fields
are considered as mandatory
(and not conditional). Required
fields are utilizes by the
various ACH specifications

true, false. true

Attribute Keyword Usage Values Default

(they do not apply to x9.37).

grayScaleImages Determines if gray scale
images are allowed as
supplemental images.

true, false. false

documentationTypeIndicatorsN
oImage

Specifies the documentation
type indicators that imply no
image attached to the current
item.

String of individual
and valid
documentation
indicators.

"ABCDEFKL"

supplementalImageFormat Specifies the format for
supplemental images, which
are those that follow the
bitonal front and bitonal back
images. Setting this to “any”
which accept any image in any
image format. Most x9
specifications will have this
attribute set to none.

none, any, jpg, gif,
png, tif.

none

minimumSupplementalImages Specifies the minimum number
of supplemental images that
can be attached to each item.
Most x9 specifications will
have this attribute set to zero.

0 to 99 0

maximumSupplementalImages Specifies the maximum
number of supplemental
images that can be attached to
each item. Most x9
specifications will have this
attribute set to zero.

0 to 99 0

multipleLogicalFilesAllowed Determines if multiple logical
files can be present within an
x9 file. A logical file is the
group of x9 records that begin
with a file control header and
end with a file trailer. This
attribute is normally disabled
for validation of all x9

true, false. false

Attribute Keyword Usage Values Default

standards but may be
acceptable for certain x9
variants.

iclCollectionTypes Defines the collection types
that are used to identify an ICL
file within the cash letter
header.

These are defined
per x9 standards but
may be extended by
x9 variants.

=00|01|02|12

iclRecordTypeIndicators

Defines the record type
indicators that are used to
identify an ICL file within the
cash letter header.

These are defined
per x9 standards but
may be extended by
x9 variants.

=E|I|F

iclrCollectionTypes Defines the collection types
that are used to identify an
ICLR file within the cash letter
header.

These are defined
per x9 standards but
may be extended by
x9 variants.

=03|04|05|06

iclrRecordTypeIndicators Defines the record type
indicators that are used to
identify an ICLR file within
the cash letter header.

These are defined
per x9 standards but
may be extended by
x9 variants.

=E|I|F

creditBalancing Defines when credit balancing
validation is to be applied to
the current file (either x9 or
ach). The “alwaysBalanced”
setting indicates that credit
balancing is always to be
performed, where debits are to
be equal to credits. The
“alwaysUnbalanced” setting
indicates that credit balancing
is to be performed, where
debits are not allowed to be
equal to credits (since the
processor is going to supply
the needed entry). The
“disabled” setting means that
credit balancing is not needed
and should not be performed.

alwaysBalanced,
alwaysUnbalanced,
disabled, mixed,
deferred.

deferred

Attribute Keyword Usage Values Default

The “mixed” setting indicates
that credit balancing will be
applied to any file that contains
both debits and credits. Finally,
the “deferred” setting indicates
that this decision is not
specified within these rules,
but will instead be assigned
from program options, where
the default is “mixed”.

creditOrientation Defines the expected
orientation for credits (deposit
tickets) within a transaction set
relative to the attached debits.
A value of “first” indicates
credits followed by debits. A
value of “last” indicates debits
followed by credits. A value of
“any” disables this setting.

first, last, any. first

creditsCanCrossBundles Defines whether credits are
allowed to cross bundles. This
parameter is typically assigned
a value of “true” since many
institutions require a bundle
size of 300 (or so) while also
allowing deposits to be larger
than that maximum bundle
size.

true, false. true

creditsCanCrossCashLetters Defines whether credits are
allowed to cross cash letters.
Enabling this would be an
unusual setting.

true, false. false

creditsOutOfBalanceLimit Controls the maximum number
of deposit out of balance
messages that will be issued.

Default is 10
(ten); a value of
zero disables
these messages.

t25ClientCreditTable Defines an external table of The credit table None; all type

Attribute Keyword Usage Values Default

type 25 routing numbers and
transaction codes that are
identified as user credits. The
table is indexed by the ECE
institution and Origination
routing numbers, which allows
a common table to be defined
for multiple clients or
applications.

name can be
provided on an
absolute or relative
basis. If relative,
then the table
should be placed
in / rules / x9rules /,
in either the launch
or home folders.

25 records are
debits when this
facility is not
used.

X9 Rules – Basis

Basis allows an extension specification to be defined which extends another x9 specification by
specifying a set of overrides to be applied to a previously defined base document. It has the following
structure:

• x9rules

◦ x9controls

◦ basis

◦ overrides

▪ x9records

The following basis defines a new x9 variant which overrides another x9 specification.

 <basis>

 <base>x9rules_dstu_2003.xml</base>

 </basis>

An x9 variant document can be defined to override a base specification and then apply the overrides
from one or more other x9 variants. When this is done, the base document is loaded and each defined
extension will be applied sequentially before then applying the overrides defined within this variant.
The following is an example:

 <basis>

 <base>x9rules_dstu_2003.xml</base>

 <extension>x9rules_frb.xml</extension>

 </basis>

Overrides are used to modify one or more fields within an x9 record as defined within the base. Only
those fields that are being overridden need to be defined within the extension. This is done as follows:

 <x9record>

 <type>10</type>

 <format>0</format>

 <name>Cash Letter Header Record</name>

 <length>f80</length>

 <field> <item>x10.02-p003-l002-mandatory-modifiable</item>

 <edit>n</edit>

 <values>=1|2|3</values>

 <name>Collection Type Indicator</name> </field>

 <field> <item>x10.08-p043-l001-mandatory-modifiable</item>

 <edit>a</edit>

 <values>=I|E|F</values>

 <name>Cash Letter Record Type Indicator</name> </field>

 </x9record>

Overrides can be used to turn off validation of specific fields within an x9 record as defined within the
base. This is done as follows:

 <x9record>

 <type>10</type>

 <format>0</format>

 <name>Cash Letter Header Record</name>

 <length>f80</length>

 <field> <item>x10.14-p078-l001-conditional-modifiable</item>

 <edit>a</edit>

 <validate>false</validate>

 <name>Returns Indicator</name> </field>

 </x9record>

Overrides can be used to indicate that a record type that is defined in the base is not validate for the
extension. This is done as follows:

 <x9record>

 <type>40</type>

 <format>0</format>

 <name>Account Totals Detail Record</name>

 <length>f80</length>

 <allowed>false</allowed>

 </x9record>

X9 Rules – X9Record

Each x9 specification consists of a series of record definitions as documented by the underlying
standard and must be defined for both base and extension XML definitions.

For a base specification, all x9 record types must be defined.

For an extension specification, only those x9 record types with differences need to be defined.

Records are defined with the following XML elements:

Xml Element Usage Presence Values Example

<type> Record type as set by the
underlying x9 specification.

Mandatory 1 through 99. <type>01</type>

<format> Record format is mandatory
and used when a given record
type has multiple defined
formats. The most common
usage of this functionality is
the type 61 credit
reconciliation record.

Mandatory Positive integer
and typically zero.

<format>0</format>

<name> Record name. Mandatory Logical record
name.

 <name>File Header
Record</name>

<length> Defines the record format and
record length for this x9
record. The record format can
be either fixed (f) or variable
(v). For fixed length records,
the length represents that
static length of the record and
is typically 80 per x9
standards. For variable length
records, the length field is
used to identify the minimal
record length that can be
present.

Mandatory “lnn” where l is
either “f” or “v”
and nn is the
required length
(fixed) and
minimum length
(variable).

<length>f80</
length>

<location> The location list is used to
define the acceptable
locations for a credit (61 or

Optional Valid locations
are as follows:
a01, a10, a20,

<location>=a10|a20|
a25g|a61g</
location>

Xml Element Usage Presence Values Example

62)) or user (68) record within
the x9 file and provides the
ability to customize the
validation process per your
specific requirements. One or
more valid record locations
can be defined and are
separated by the pipe
character.

a25, a25a, a25g,
a31, a31a, a31g,
a61, a61g, a62,
a62g, a70,

a75, a90, any.

creditsAddToIte
mCount

Determines if credits will add
to the item count in all x9
trailer records.

true, false false <creditsAddToItemC
ount>true</
creditsAddToItemCo
unt>

creditsAddToTot
alAmount

Determines if credits will add
to the total amount in all x9
trailer records.

true, false false <creditsAddToTotal
Amount>true</
creditsAddToTotalA
mount>

creditsAddToIma
geCount

Determines if credits will add
to the image count in all x9
trailer records.

true, false true <creditsAddToImage
Count>true</
creditsAddToImage
Count>

<xmlTags> Contains five individual tags
which are used to both build
and parse the xml document
which represents the type 68
user data field. These tags are
set from an incoming string
with the tags separated by the
pipe character.

Optional The xmlTags
string is optional
and formatted as:
“xmlDocumentId|
fieldCountId|
fieldId|nameId|
valueId".

<xmlTags>ATMUse
rRecord|FieldCount|
Field|name|value</
xmlTags>

<field> The list of fields that comprise
this x9 record type and
format.

Mandatory Per specific and
documented xml
requirements.

<field>
<item>x01.14-p080-
l001-mandatory-
modifiable</item>
<edit>b</edit>
<name>Reserved</n
ame> </field>

An example of an x9 record definition is as follows:

 <x9record>

 <type>01</type>

 <format>0</format>

 <name>File Header Record</name>

 <length>f80</length>

 <field> <item>x01.01-p001-l002-mandatory-notModifiable</item>

 <edit>n</edit>

 <name>Record Type</name> </field>

…...................

…...................

…...................

…...................

…...................

 <field> <item>x01.14-p080-l001-mandatory-modifiable</item>

 <edit>b</edit>

 <name>Reserved</name> </field>

 </x9record>

X9 Rules – Field

Each x9 record consists of a series of field definitions. Fields are defined with the following XML
elements:

Xml Element Usage Presence Example

<name> Sets the name for this field. Mandatory <name>Record
Type</name>

<item> Defines the high level attributes for this
field.

Mandatory <item>x01.02-p003-l002-
mandatory-modifyable</
item>

Format is: xRR.FF-pPPP-lLLL-
PRESENCE-MODIFYABLE

where:

RR is the x9 record number

FF is the field number within the record
which must be logically ascending within
the definition

LLL is the field offset within the x9 record
relative to one

PRESENCE is one of the following
values:

mandatory :: the field must be present

conditional :: the field may be blanks but

Format is: xRR.FF-pPPP-
lLLL-PRESENCE-
MODIFYABLE

where:

RR is the x9 record
number

FF is the field number
within the record which
must be logically
ascending within the
definition

LLL is the field offset
within the x9 record
relative to one

PRESENCE is one of the
following values:

Xml Element Usage Presence Example

must be valid per defined validation rules
when present

dependentMandatory :: the field is
mandatory when the associated condition
is met

dependentConditional :: the field is
conditional when the associated condition
is met

MODIFYABLE is one of the following
values:

modifiable :: field can be modified by
X9Assist

notModifyable :: field cannot be modified
by X9Assist

mandatory :: the field
must be present

conditional :: the field
may be blanks but must
be valid per defined
validation rules when
present

dependentMandatory ::
the field is mandatory
when the associated
condition is met

dependentConditional ::
the field is conditional
when the associated
condition is met

MODIFYABLE is one of
the following values:

modifyable :: field can be
modified by X9Assist

notModifyable :: field
cannot be modified by
X9Assist

<edit> Defines an edit rule for this field. There
can be one or more edit rules assigned to
each field (there is no limit as to how
many can be assigned, but there is an

Mandatory <edit>n</edit>

Xml Element Usage Presence Example

upper limit within the X9Assist field
viewer. There must be at least one edit
rule. If there are no logical edits to be
assigned, then the “edit=none” rule should
be specified.

<validate> Set as a convenient way to disable
validation for this field without removing
the edit rules. This feature is typically used
to turn off validation as an override against
a x9 specification when the standard
validation is to be disabled.

Optional <validate>false</
validate>

<justify> Field justification override, which provides
a value that is different than what was
assigned by the edit rule. This optional
feature is available for user x9 variant
definitions, but there is no usage of this
feature within x9 specifications provided
by X9Ware. A possible usage would be to
define a numeric blank field that is
justified right instead of left.

Optional <justify>right </justify>

<values> List of valid values for this field separated
by the pipe (“|”) character.

Optional <values>=1|2|3</values>

<iclValues> List of possible values which is applied
only when the field is within an ICL
bundle.

Optional <iclValues>01</
iclValues>

<iclrValues> List of possible values which is applied
only when the field is within an ICLR
bundle.

Optional <iclrValues>01</
iclrValues>

<variableLengthDesc
riptor>

Set when this field is a variable length
descriptor for the following field.
Examples are the length fields for the type
52 image reference key, digital signature,
and image data.

Optional <variableLengthDescripto
r>true</
variableLengthDescriptor
>

<xmlid> Set the XML ID which contains the xml
field name for type 68 records when the
user data field contains an xml document

Optional <xmlid>authorizationCod
e</xmlid>

Xml Element Usage Presence Example

and not a structured list of individual
fields.

X9 Rules – Local Edits

Local field edits are applied by validating the actual field data against specialized rules that are based
solely on inspection and do not need to take the content of other fields into consideration. Available
local edits are as follows:

/*
 * System local edits.
 */
b, // blanks
binary, // binary data
n, // numeric
nq, // numeric questionable
nb, // numeric blank
nbq, // numeric blank questionable
nbsm, // numeric blank special micr
ns, // numeric special
a, // alphabetic
an, // alphameric
ans, // alphameric / special
anslb, // ans allowing a leading blank (blanks can be leading and trailing)
sp, // special per x9.100-187-2013 rules
nsp, // numeric special per x9.100-187-2013 rules
ansp, // alphameric special per x9.100-187-2013 rules
ua, // upper case alphabetic
uan, // upper case alphameric
p, // alphameric with no justification per cpa005 rules
zero, // zero
nonzero, // nonzero
warnIfZero, // warn message when zero value
nonzeroByAgreementOnly, // nonzero by agreement only
min, // minimum value
max, // maximum value
none, // no validation is to be performed against this field value
sequential, // starting at 1 incremented by +1 within adjacent records of same type
sequential2, // similar to sequential, but against the first fields within the record
ascending, // generalization of sequential (no requirement on initial value or increment)
ascendingOrEqual, // generalization of ascending with duplicate values allowed
table, // table lookup using a value list located in the /rules/tables/ folder
test, // test-pass-fail using an xml testSet definition from the /rules/tests/ folder
mmyy, // date in mmyy format
mmdd, // date in mmdd format
yymmdd, // yy >= minimum year and yy <= maximum year per current rules
yyyymmdd, // yyyy >= minimum year and yyyy <= maximum year per current rules
dateRange, // range /low|high such as "/+0C|+3F" where C=calDays, W=weekdays, F=FRB holidays
MinimumDate, // >= Minimum date going backward x days per dateWindowMinusDays
MaximumDate, // <= Maximum date going going forward x days per dateWindowPlusDays
hhmm, // time as hhmm
hhmmss, // time as hhmmss
MICRonus, // Micr OnUs
CreditSourceOfWork, // Type 61 (DSTU) and type 62 credit source of work
ABA, // nnnnnnnnb and nnnnnnnnC (including mod10 when the check digit is present)
ABA4x4, // nnnnnnnnb, nnnnnnnnC (including mod10), and nnnn-nnnn
ABAmod10, // nine digit mod10 routing as nnnnnnnnC
AbaFileRouting, // nine digit mod10 with FRB district 00-12, 21-32, 61-72, or 5x
AbaPayorRouting, // nine digit mod10 with FRB district 00-12, 21-32, 80, or 5x
AbaEndorsementRouting, // nine digit mod10 with FRB district 00-12, 21-32, or 80
MinimumImageLength, // Minimum image length
MaximumImageLength, // Maximum image length
ImageBounds, // single rule as image bounds /MinimumImageLength|MaximumImageLength

/*
 * Validations that are used by CPA 015 and various cross border standards.
 */
CpaFileRouting, // per CPA: currency, payment type, region, site, and FI Number
AbaOrCpaFileRouting, // either nnnnnnnnC or CpaFileRouting
AbaOrCpaPayorRouting, // routing as nnnnnnnnC, nnnn-nnnn, or nnnnn-nnn,

/*
 * Validations that are unique to the East Carribbean ACH format.
 */
abaEcAch, // East Carribbean ACH has pseudo 8 digit routing with zero check digit

/*
 * Validations that are unique to ACH (NACHA).
 */
achABA8, // routing formatted as TTTTAAAA
achABA9, // routing formatted as TTTTAAAAC; TTTTAAAA in this field and C in next field
achImmediateOrigin, // "bTTTTAAAAC" or 10 digits numeric
achImmediateOriginNoMod10, // "bNNNNNNNNN" or 10 digits numeric
achABA10, // formatted as bTTTTAAAAC (routing) or 1NNNNNNNNN (TaxID)
achEntryClass, // standard entry class
achCompanyName, // various batch header company name validations
achCompanyDesc, // various batch header company description validations

/*
 * Validations that are unique to CPA005.
 */
cp5Jdate, // six digit julian date

X9 Rules – Cross Field Edits

Cross field edits are applied by validating the actual field data against specialized rules that must
compare the content against other fields that may exist either in this record or may exist in other
records within the current x9 file. Available cross field edits are as follows:

/*
 * Validations that are unique to the x9 standards.
 */
CompareToFileOriginRouting, // compare to file immediate origination routing
CompareToCashLetterEceRouting, // compare to cash letter ECE institution routing
CompareToCashLetterDocType, // compare to cash letter documentation type indicator
CompareToBundleEceRouting, // compare to bundle ECE institution routing
CompareToBundleCreationDate, // compare this date to the bundle creation date
CompareToBundleBusinessDate, // compare this date to the bundle business date
CompareToBundleCycleNumber, // compare this cycle to the bundle cycle number
CashLetterIdIsUnique, // cash letter id is unique within file (FRB and CPA 015)
BundleIdIsUnique, // bundle is unique within file
CollectionTypeIndicator, // allowed values for collection type indicator
AddendumCount, // addendas attached to the current type 25/31 record
TruncIndRequiredY, // type 26/28/32/35 truncation indicator validation
TruncIndOnlyOneY, // obsolete as of R4.11
TruncIndNoWhenEpcIs4, // obsolete as of R4.11
CompareToItemPayorRouting, // compare to the current item payor routing
CompareLastAddendumReturnReasonToItem, // compare last type 35 return reason to 31.6
CompareToImageDetailImageLength, // image length between type 50 and 52
CompareToImageDetailImageIndicator, // image indicator between type 50 and 52
CompareImageWidthToAuxOnUsLength, // ensure image width is sufficient for AUXOnUs chars
Icl, // allowed values when in an ICL file
Iclr, // allowed values when in an ICLR file
IclrAdmin, // allowed values when in an ICLR Administrative Returns file
IclrCustomer, // allowed values when in an ICLR Customer Returns file
MaximumCombinedImageLength, // maximum combined (front+back) image length

ViewSideIndicator, // field 50.08 view side indicator
SecurityKeySize, // field 50.12 security key size
ImagePresenceBasedOnDocType, // image present when G and not present when A-F
BlankWhenNoImage, // blank when image indicator (50.2) is '0' (no image present)
CompareToCheckDetailItemSequenceNumber, // compare to the check detail sequence number
PresenceBasedOnDigSigInd, // presence based on digital signature indicator
BundleItemCount, // bundle item count
BundleTotalAmount, // bundle total amount
BundleCreditCount, // bundle item count for x9.100-180
BundleCreditTotalAmount, // bundle total amount for x9.100-180
BundleMICRValidTotalAmount, // bundle MICR valid total amount
BundleImageCount, // bundle image count
IclBundleCount, // ICL bundle count
IclItemCount, // ICL item count
IclTotalAmount, // ICL total amount
IclCreditCount, // ICL credit count for x9.100-180
IclCreditTotalAmount, // ICL credit total amount for x9.100-180
IclImageCount, // ICL image count
CashLetterCount, // cash letter count
TotalRecordCount, // total record count
TotalItemCount, // total item count
TotalFileAmount, // total file amount
TotalFileCreditAmount, // total file credit amount

/*
 * Validations that are unique to the Canadian CPA.
 */
CpaCompareToFileHeaderOrigRouting, // compare this RT to file header origination routing
CpaOrigRoutingFormat, // validate the origin RT against the destination RT
CpaOrigRoutingFormatWhenCpa, // validate origin against destination when CPA format
MaximumAmountWhenCanadianCurrency, // maximum amount when Canadian currency
CpaValidateRoutingCurrency, // validate currency against the file header
CompareToFileHeaderCollectionType, // compare collection type CPA file header RT
CompareToCommonBusinessDate, // common business date across all cash letters
BundleSequenceIsAscending, // bundle sequence is ascending within cash letter
CashLetterDocTypeVsRecordType, // value C when 10.8 = E and G when 10.8 = I

/*
 * Validations that are unique to ACH (NACHA).
 */
AchIatCurrency, // IAT batch header currency code
AchIatRdfiBranchCountryCode, // IAT 5th IAT addenda record RDFI branch country code
AchItemAmount, // item amount rules
AchItemAddendaCount, // item addenda count
AchAddendumCompareToTrace, // compare this trace number to item trace number
AchAddendumCompare7ToTrace, // compare last 7 of this trace number to item trace number
AchValidate820Payment, // validate 820 payment data and otherwise left justification
AchBatchNumberUnique, // batch number is unique
AchServiceClass, // validate service class for this standard entry class
AchTranCodeAllowed, // validate tranCode based on entry class and service code
AchTraceCompareToBatchOdfi, // compare first 8 back to ODFI batch header
AchTraceNumber, // compare first 8 back to ODFI batch header; validate last 7 as ascending
AchCompareToServiceCode, // compare service code back to the batch header
AchCompareToBatchNumber, // compare batch number back to the batch header
AchBatchEntryAddendaCount, // bundle entry and addenda count
AchBatchHash, // bundle hash total
AchBatchDebitAmount, // bundle total debit amount
AchBatchCreditAmount, // bundle total credit amount
AchFileBatchCount, // file batch count
AchFileBlockCount, // file block count
AchFileEntryAddendaCount, // file entry and addenda count
AchFileHash, // file hash total
AchFileDebitAmount, // file total debit amount
AchFileCreditAmount, // file total credit amount

/*
 * Validations that are unique to CPA005.
 */
cp5LogicalRecordCount, // sequential position with the file
cp5OriginationControl, // match back to the file header originator + file creation number
cp5TraceNumber, // IIIICCCCCFFFFNNNNNNNNN; IIII clearId; CCCCC originating data centre

// (A/U.6), FFFF file creation number (A/U.4), NNNNNNNNN item sequence number as a/n
cp5InvalidDataElementID, // formatted as AABBCCDDE where first 4 groups are 04-21

X9 Rules – Date Range Validations

The “dateRange” local edit rule is provided to validate a date against a "low|high" date range, which is
parameterized using a validation string with separate entries for the low date and high date (these two
definitions are separated by the pipe character).

The basic string which describes a date within this range consists of [sign] dayCount[dayIndicator].

• The sign is either "+" or "-" which indicates the direction that the date is calculated from the
current calendar date.

• The day count is the number of days to move forward or backward, depending on the sign.

• The trailing day indicator must be "C" for calendar days, "W" for week days, and "F" for work
days based on the FRB holiday schedule.

This single validation rule can be applied to input dates that are either in 6 digit (YYMMDD) or 8 digit
(YYYYMMDD) format.

On a Friday with a following Monday that is a FRB holiday, a value of "+0C” is calculated as Friday,
"+1W" is calculated as Monday, and "+1F" is calculated as Tuesday. Similarly, a range of "+0C|+2F"
would be calculated as Friday through Wednesday, and "-1C|+3F" would be calculated as Thursday
through Thursday.

X9 Rules – Tables

Tables are used to define a list of values by table name. Table validations are applied by the
<edit>table/tablename</edit> rule. Tables are useful when the same list of values are applied to
numerous fields and there is a desire to only define those allowable values in a single location. Tables
are also useful when the list of valid values is extremely lengthy and thus not a good candidate for
direct value checking.

Tables are loaded only once for a given execution and are shared by all x9 configuration rules. All
comparisons are done on a trimeed and upper case basis. Value comparisons are applied based on
individual field attributions. For example, a table value ot “1” when compared to a numeric field with a
value of “001” will result in true.

A table example is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<x9table>

 <entry> <key>0</key> <value>Vancouver</value> </entry>

 <entry> <key>1</key> <value>Montreal</value> </entry>

 <entry> <key>2</key> <value>Toronto</value> </entry>

 <entry> <key>3</key> <value>Halifax</value> </entry>

 <entry> <key>7</key> <value>Winnipeg</value> </entry>

 <entry> <key>8</key> <value>National</value> </entry>

 <entry> <key>9</key> <value>Calgary</value> </entry>

</x9table>

X9 Rules – Tests

Test sets are applied by the <edit>/test/testSetName</edit> rule. Test sets are used to implement cross
field validations, where the allowable content for one field is dependent on the value assigned to
another field. Each test set consists of a series of tests which are applied sequentially to validate a field
value. Each individual test results in a value of pass, fail, or undetermined. The execution and
evaluation process for the overall test set is as follows:

• Examine and evaluate each test sequentially within the test set.

• The test set is passed when the current test entry renders an explicit result of passed.

• The test set is failed when the current test entry renders an explicit result of failed.

• Otherwise, when the current test entry renders a value of false, then the overall test set
evaluation will continue with the next sequential test until all tests have been processed.

• The test set is considered as failed when all tests within the test set return a value of false.

• Each test set assigns its own unique error message to describe the field level failure, along with
an optional severity level, which can be conditional based on the x9 rules used for validation.

Test sets implement an overall test-pass-fail framework where a field can be conditionally validated
based on the value assigned to one or more other fields. This is the more complex condition where the
allowed values for one field are dependent on the values of another field with the x9 file. This indirect
reference is performed against a data record that precedes the current record position within the file.
Each test definition is divided into two parts:

• "condition" which is optional and is used to associate this test to the value of another related
field within the x9 file. If a condition is present, then it must be true for the attached
comparison to be performed. A test is false (failed) when either the condition or the comparison
is false. The condition is based on the <field> parameter which tags this comparison to the other
related field. As indicated, the condition is optional and is defaulted to true when omitted.

• "comparison" which is optional and will be evaluated when the prefaced condition is true, or
when that condition has been omitted.

The "condition" relationship is implemented as a look back from the current x9 record to preceding
records within the file. This design requires that tests be defined on the second field within the
relationship, so the look back (to the previous record type) can be done. This look back is limited to
certain record types based on file positioning of the field that is being validated. Tests currently support
look back to the following record types:

• file header;

• cash letter header;

• bundle header;

• the current item when located within an item group;

• any individual record type that is directly associated to the field which invoked the test.

A “condition” definition consists of the following components:

• The “fileSpec” parameter is used to associate this test to a specific set of x9 configurations. This
relationship can be specific (eg, the 100-187-2008 specification) or more generic in nature (eg,
all 100-187 specifications and their variants). This comparison is considered true when the
currently loaded x9 specification contains the indicated comparison string. Typical values for
this test are as follows:

◦ x9.37

◦ 100-187

◦ 100-187-2008

◦ 100-187-2013

◦ 100-180

◦ CPA

◦ UCD

◦ UCD-2008

◦ UCD-2013

◦ etc

• The “field” parameter is used to identify a relationship of this test to another field within the
current file. The related field is identified on a record and field number basis.

• The “isEqual” or “isNotEqual” parameters which are then used to specify the required
comparison for the test condition to be evaluated and determined to be successful. These
comparisons can be applied to either numeric or alpha field content. The equal or not equal tests
can be specified on either an absolute or indirect basis:

◦ An absolute value is a single value (it cannot be a list) which identifies the required value
for this test to continue. For example, <isEqual>X</isEqual>.

◦ An indirect value which specifies the required value based on field content. Indirect field
values are identified using brackets. For example, [01.2] would reference the content of the
standards level in the file control header record. A special string value [this] is used to
reference the value of the field that launches the test set.

◦ An expression evaluation using a built-in function such as concat, substr, etc.

The "comparison" can then contain the following evaluation parameters:

• <values> which specifies a list of values which must be satisfied. The value test is defined in
the same manner as the <values> parameter as used in x9 rule based tests, and can be used
against both alpha and numeric fields. Alpha fields are always compared on a trimmed and
upper case basis. Numeric fields are compared on a logical value basis (for example, a
comparison value of “1” will be successfully matched against a field value of “001”. Examples
are as follows:

◦ <values>=0|1|2|3</value>

◦ <values>=0|1|2|20|21|22|23|24</value>

◦ <values>=A|B|C|D|H|I|J|K|L|M|N|R|S|X|1|3|7|8</value>

◦ <values>=//client.properties//clientRouting</value>

• <pass> which is used to explicitly pass the field value when it conforms to a data format.
Allowable data formats are:

◦ b (blanks)

◦ p (populated)

◦ n (numeric)

◦ a (alpha)

◦ an (alphanumeric)

◦ date (YYYYMMDD format)

◦ [true]

◦ [false]

• <fail> which is used to explicitly fail the field value when it conforms to a data format (which is
the same list as supported by <pass>).

• <minimum> which specifies a minimum value which must be satisfied. The minimum test can
be performed against both numeric and alpha fields.

• <maximum> which specifies a maximum value which must be satisfied. The maximum test can
be performed against both numeric and alpha fields.

• <table> which specifies that the value should be looked up in an external table. The test will be
passed when the table contains the current field value. These table definitions are commonly

defined and shared with the <edit>table/</edit> rules, so they can be used for other validations.
Tables are stored in folder /rules/tables/.

• <pattern> which specifies a RegEx pattern which must be satisfied for the test to be successful.
RegEx pattern evaluations can vary considerably by environment (Java, .Net, Perl, etc) so
please ensure that your pattern is written and targeted for the Java environment. There are
various websites that can be very helpful in this area, which you can quickly find using a
Google search. First are sites that outline the differences between the evaluation process based
on platform, which helps you to understand the requirements of the Java evaluator. Second are
sites that will actually perform online and interactive tests using specific patterns against
specific values. We highly recommend that you use such a site during your development and
testing to achieve desired results and easily determine the pass-fail results for field data
combinations. Since a test set can consist of multiple tests, you can match a single field against
multiple patterns. In this situation, the first test that passes with cause the overall test set to be
passed.

• <accept> which is used to accept the field based on whether the current x9 record is located in a
cash letter or bundle. This test is provided since a “condition” relationship to a field in another
record will fail if that record type is determined to not exist. For example, if you do a look back
to the cash letter header, and the current x9 record does not exist in a cash letter, then the
conditional relationship test will fail. That result may often be desirable, but there are situations
where you want to pass (and not fail) a test in that specific situation. This can be be done using
the accept parameter. Allowable tests are:

◦ inCashLetter

◦ notInCashLetter

◦ inBundle

◦ notInBundle

• <message> which contains the error message text to be issued when the test set fails.

• <severity> which identifies the error message severity and defaults to error. The valid error
severity levels are:

◦ error

◦ warn

◦ info

◦ ignore

There are two basic formats of the error message severity tag:

◦ <severity>ErrorLevel</severity>

◦ <severity>s1:e1|s2:e2|… |DefaultErrorLevel></severity>

Where s1 (etc) is a character string that is matched against the x9 configuration name which is
actively being used to validate the x9 file. If s1 is contained within the current x9 configuration
name, then the e1 (etc) severity will be assigned to the created error message. Otherwise the
DefaultErrorLevel will be assigned to the new error message. The s1, s2, (etc) strings are
examined sequentially with the severity from the first matching string applied.

Examples of severity assignments are as follows:

◦ <severity>warn</severity>

◦ <severity>ucd:error|187:warn|ignore</severity>

In the following table, the term “expression” refers to one of the following:

• An actual string (eg, T).

• A indirect reference to a preceding field (eg, [1.10]

• An expression evaluation using a built-in function

Built-In Functions

The following built-in functions can be used to formulate values:

Built-In Function Description Parm1 Parm2 Parm3

substr Substring from a defined
starting position (relative to
zero) for the remainder of
the string.

Expression Length

substr Substring from a defined
starting position (relative to
zero) for a defined length.

Expression Position Length

concat Concatenate two or more
strings, fields, or
expressions.

Expression 1 Expression 2 Etc

leftPad Pad on the left. Expression String Length

rightPad Pad on the right Expression String Length

remove Remove a string repeatedly. Expression String

removeOnce Remove a string just once. Expression String

removeStart Remove from the start of the
string just once.

Expression String

removeEnd Remove from the end of a
string just once.

Expression String

removeLeading Remove from the start of a
string repeatedly.

Expression String

removeTrailing Remove from the end of a
string repeatedly.

Expression String

Built-In Function Description Parm1 Parm2 Parm3

repeat Repeat a string. Expression String Count

replace Replace within a string
repeatedly.

Expression String

replaceOnce Replace within a string just
once.

Expression String

External Property Files

Values can reference an externally defined value within one or more external properties files, where the
property files are located in the same folder where the x9 rules are stored. The format of a properties
reference is: //profileName.properties//propertyName. These external references can be used to validate
specific values that may be associated with a specific client or operational area.

Example

The following is an example which uses test against to validate against a preceding field value:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Test: eexReturnReason -->

<!-- Severity: error -->

<testSet>

 <test> <field>10.14</field> <isEqual>E</isEqual> </test>

 <test> <field>10.14</field> <isEqual>R</isEqual> </test>

 <test> <field>10.14</field> <isEqual>D</isEqual> <values>=Y</values> </test>

 <test> <field>10.14</field> <isEqual>X</isEqual> <values>=Q|I|U|1|2|O</values>
</test>

 <message>Does not match EEX cash letter returns indicator</message>

</testSet>

The following is an example which requires the current field value to match a preceding field value
within the x9 file:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Test: compareToCashLetterDestRouting -->

<!-- Severity: error -->

<testSet>

 <test> <field>10.3</field> <isEqual>[this]</isEqual> </test>

 <test> <accept>notInCashLetter</accept></test>

 <message>Must match cash letter destination routing</message>

 <repair>[10.3]</repair>

</testSet>

X9 Rules – POD Credit Tables

Credit tables are an advanced feature that can be used to simulate a POD capture environment. In this
scenario, an Image Cash Letter (ICL) contains logical transactions which consist of credits offset by
debits, where all items are identified using type 25 item detail records. Each transaction can consist of
one or more credits offset by one or more debits. ICLs are often in this format, where the electronic
deposit contains a deposit ticket offset by items. In fact, depending on the environment, ICLs may
actually contain multiple deposits, either to the same or different accounts at the depositor’s financial
institution. Using this X9Assist feature adds value in several ways:

• Once a type 25 record is identified as a credit, it allows X9Assist to balance the individual
transaction. A validation error will be thrown when a deposit is out of balance (the credit total
amount does not equal the debit amount).

• In addition, another validation error will be thrown when the overall file is out of balance (the
file credit total amount does not equal the file debit total amount).

The credit table is defined separately from x9rules. The x9controls section uses parameter
“t25ClientCreditTable” to define the credit table name. This name can be provided in either an absolute
or relative basis. When relative, the file must be defined within either the launch or home folder, within
/ rules / tables /. When absolute, the credit table can be stored within a folder that is convenient for
updating. The use of an absolute location allows the definition within x9rules to be provided just once
(as a pointer) with the credit table then updated externally as needed.

Credit tables can be defined using a client identifier, which is constructed from the ECE institution and
destination routings from the cash letter header. This approach allows a single credit table to identify
credit information for multiple clients within your capture environment.

The client table (located within the credit table) then defines one or more credits using the payor
routing and transaction code from the type 25 record. Each credit configuration identifies routing(s)
and transaction code(s). These are specified on a WYSIWYG basis. If both nine digit and 4-4 routings
are to be accepted, then multiple routings must be provided.

For a given routing, the transaction code is optional. When the transaction code is omitted, then the
routing is dedicated to credits, which means that no transaction code is required. Alternatively, the
routing can be shared between debits and credits. In that situation, a credit is identified when the
transaction code (from the MICR OnUs value) matches a provided value.

The client table may become a large document. X9Assist includes the Credit Table Editor which allows
the credit table to be updated on an interactive basis. The credit table can also be constructed on an
automated (programmatic) basis from POD (capture system) tables. Given the potential size and
complexity of the credit tables, it is not recommended that they are edited using XML text editors.

Here is a sample (simplistic) credit table:

<?xml version="1.0" encoding="UTF-8"?>
<creditTable>

 <clients>
 <client>
 <eceRouting>123456780</eceRouting>
 <destRouting>123456780</destRouting>

 <description/>
 <credit>
 <routing>555555550</routing>
 <tranCode>5</tranCode>

 <tranCode>05</tranCode>
 <tranCode>005</tranCode>

 </credit>
 </client>
 </clients>
</creditTable>

Here is a sample x9rules definition that is an extension to a basis document and includes definition of
the credit table. This sample first defines the credit table and then provides an override for the type 25
record to indicate that the type 25 credit counts and amounts are to be added into trailer totals (note that
this is also the default, so this entire type 25 override could be omitted). However, in some
environments, it may be desirable to include this with other settings (for example, add type 25 credit
counts into trailer totals). The x9rules sample is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<x9rules>

 <x9Controls>

 <x9Specification>Test Rules x9.100-187-2008</x9Specification>

 <creditOrientation>first</creditOrientation>

 <creditsCanCrossBundles>true</creditsCanCrossBundles>

 <creditsCanCrossCashLetters>false</creditsCanCrossCashLetters>

 <t25ClientCreditTable>sampleCreditTable.xml</t25ClientCreditTable>

 </x9Controls>

 <basis>

 <base>x9rules_x9.100-187.xml</base>

 </basis>

 <overrides>

 <x9record>

 <type>25</type>

 <format>0</format>

 <length>f80</length>

 <creditsAddToItemCount>true</creditsAddToItemCount>

 <creditsAddToTotalAmount>true</creditsAddToTotalAmount>

 <name>Check Detail Record</name>

 </x9record>

 </overrides>

</x9rules>

TIFF RulesTIFF Rules

TIFF image validation is a complex part but also very important facet of the x9 file validation process.
X9Ware has a very powerful TIFF validation engine that is XML driven, allowing the validation
process to be customized per specific user requirements.

The TIFF tag XML document is the core structure which defines TIFF validation for a given x9
specification. It has the following basic structure:

• tiffrules

◦ tiffControls

◦ tiffEdits

▪ tiffEdit

◦ mandatoryTiffTags

◦ tiffTagDescriptions

It is also possible to define separate TIFF validation rules for black white versus gray scale images.
When using this functionality there can be up to four 50-52-54 image sequences, where the first image
set is associated with the black white image and the second image set is associated with the gray scale
image.

The following XML structure is used when defining both black white and gray scale rules:

• tiffrules
◦ blackWhite

▪ tiffControls
▪ tiffEdits

• tiffEdit
▪ mandatoryTiffTags

◦ grayScale
▪ tiffControls
▪ tiffEdits

• tiffEdit
▪ mandatoryTiffTags

◦ tiffTagDescriptions

TIFF Rules – TIFF Controls

TIFF Controls are used to define the high level attributes of a given TIFF validation set. Each attribute
has a key word, allowable values, and a default value.

TIFF Controls attributes are as follows:

Attribute Keyword Usage Values Default

<endianFormat> Defines whether the IFD
is must be little endian
or big endian. In the “II”
format, byte order is
always from the least
significant byte to the
most significant byte,
for both 16-bit and 32-
bit integers This is
called little-endian byte

order. In the “MM”
format, byte order is
always from most
significant to least

significant, for both 16-
bit and 32-bit integers.
This is called big-endian
byte order.

littleEndian,
bigEndian, either.

littleEndian.

<ifdOnWordBoundary> Defines whether the IFD
must begin on a word
boundary.

true, false. false.

<ascendingTagsRequired> Defines if tags must be
in numerically
ascending sequence.

true, false. true.

<duplicateTagsAllowed> Defines if duplicate tags
are allowed.

true, false. false. false.

 <privateTagsAllowed> Defines if private tags
are allowed.

true, false. true.

Attribute Keyword Usage Values Default

<privateDuplicateTagsAllowed> Defines if private
duplicate tags are
allowed.

true, false. false.

<multiStripAllowed> Defines if multi-strip
images will be allowed.

true, false. true.

<validateEOFB> Defines if EOFB
validation will be
performed.

true, false. true.

<maximumEofbZeroPadBytes> Maximum number of
EOFB zero pad bytes
which can be appended
to the end of the
standard EOFB
sequence. Per Group4
Fax standards, this
should be set to zero.
However, some TIFF
encoders will append
pad bytes and this
parameter allows these
images to be accepted
without error.

Positive integer. 0.

<imageMinWidth> Minimum image width
defined in inches.

Decimal value. 4.100.

<imageMaxWidth> Maximum image width
defined in inches.

Decimal value. 10.500.

<imageMinHeight> Minimum image height
defined in inches.

Decimal value. 1.752.

<imageMaxHeight> Maximum image height
defined in inches.

Decimal value. 5.700.

<applyIqaRules> Defines if IQA rules will
be applied as part of x9
file validation.

true, false. false.

<applyIqaToFrontOnly> Defines if IQA rules will true, false. true. true.

Attribute Keyword Usage Values Default

be applied only to front
images.

<frontTooLight> Minimum percentage of
black pixels which must
be present. Minimum
percentage of black
pixels which must be
present.

Percent of pixels
(from 0 to 100
expressed as a
decimal value).

0.900

<frontTooDark> Maximum percentage of
black pixels which must
be present.

Percent of pixels
(from 0 to 100
expressed as a
decimal value).

90.000

<backTooLight> Minimum percentage of
black pixels which must
be present.

Percent of pixels
(from 0 to 100
expressed as a
decimal value).

0.380

<backTooDark> Maximum percentage of
black pixels which must
be present.

Percent of pixels
(from 0 to 100
expressed as a
decimal value).

98.000

An example is as follows:

<tiffControls>

 <endianFormat>either</endianFormat>

 <ifdOnWordBoundary>false</ifdOnWordBoundary>

 <ascendingTagsRequired>true</ascendingTagsRequired>

 <duplicateTagsAllowed>false</duplicateTagsAllowed>

 <privateTagsAllowed>true</privateTagsAllowed>

 <privateDuplicateTagsAllowed>false</privateDuplicateTagsAllowed>

 <multiStripAllowed>true</multiStripAllowed>

 <validateEOFB>false</validateEOFB>

 <maximumEofbZeroPadBytes>0</maximumEofbZeroPadBytes>

 <imageMinWidth>4.100</imageMinWidth>

 <imageMaxWidth>10.500</imageMaxWidth>

 <imageMinHeight>1.752</imageMinHeight>

 <imageMaxHeight>5.700</imageMaxHeight>

 <applyIqaRules>false</applyIqaRules>

 <applyIqaToFrontOnly>true</applyIqaToFrontOnly>

 <frontTooLight>0.900</frontTooLight>

 <frontTooDark>90.000</frontTooDark>

 <backTooLight>0.380</backTooLight>

 <backTooDark>98.000</backTooDark>

 </tiffControls>

TIFF Rules – TIFF Edits

TIFF Edits are used to define the validation attributes for a given TIFF tag. Allowable attributes are as
follows:

Xml Element Usage Presence Values Example

<tag> Tiff tag number. Mandatory 1 through 65535. <tag>266</tag>

<type> Type defines the field type
per the TIFF 6.0 standard.

Mandatory BYTE, ASCII,
SHORT, LONG,
RATIONAL,
SBYTE,
UNDEFINED,
SSHORT, SLONG,
SRATIONAL,
FLOAT, DOUBLE.

<type>LONG</type>

<count> Count s the number of
values that re present in the
directory entry. Note that
Count is not the total
number of bytes. For
example, a single 16-

bit word (SHORT) has a
Count of 1 and not 2.

Mandatory Positive integer. <count>1</count>

Xml Element Usage Presence Values Example

<values> Defines a list of acceptable
values.

Optional List of values
separated by the pipe
character.

<values>=200|240</
values>

<variance> Defines a list of values that
will be reported on a
variance basis.

Optional List of values
separated by the pipe
character.

<warn> Defines a list of values that
will be reported on a
warning basis.

Optional List of values
separated by the pipe
character.

<info> Defines a list of values that
will be reported on an info
basis.

Optional List of values
separated by the pipe
character.

<minimum> Defines a minimum value. Optional Positive integer. <minimum>2</
minimum>

<maximum> Defines a maximum value. Optional Positive integer. <maximum>2</
maximum>

<rule> Defines specialized rules
that can be applied to TIFF
tag validation.

Optional nonzero

notAllowed

notAllowedWarn

notAllowedInfo

tag278RowsPerStrip

<rule>notAllowed</
rule>

An example is as follows:

 <tiffEdit>

 <tag>266</tag>

 <type>SHORT</type>

 <count>1</count>

 <values>=1|2</values>

 <variance>=2</variance>

 </tiffEdit>

TIFF Rules – Mandatory TIFF Tags

This XML element provides a list of all TIFF tags which are considered as mandatory. An error will be
thrown if the image does not include this tag.

An example is as follows:

<mandatoryTiffTags>

 <tag>256</tag>

 <tag>257</tag>

 <tag>259</tag>

 <tag>262</tag>

 <tag>273</tag>

 <tag>278</tag>

 <tag>279</tag>

 <tag>282</tag>

 <tag>283</tag>

 </mandatoryTiffTags>

TIFF Rules – TIFF Tag Descriptions

The tag description list is used to provide overrides to the standard list of tiff tag descriptions that are
by default included in our tiff rules support. The standard descriptions cover all tiff tags which are
commonly present in a typical x9.100-181 black-white image that is valid for image exchange, and also
includes tiff tags as defined by the TIFF 6.0 standard. We will gladly add common tiff tags to our
standard list if they are generally used through the industry. Please send them to X9Ware and they will
be incorporated.

This tag list is defined within the tiff rules and can contain either additions or replacements to the
standard list. Each entry contains the numeric tag value and the associated string name. The tag
description will be reported as unknown when not defined within this list.

 <tiffTagDescriptions>

 <tiffTag> <tag>254</tag> <description>NewSubfileType</description> </tiffTag>

 </tiffTagDescriptions>

Gray Scale Image SupportGray Scale Image Support

Gray scale images are implemented through the x9 and tiff validation rules. Typically, image exchange
supports two bitonal images (front and back). The addition of gray scale allows you to have three or
four images. The first two images are bitonal front and back. This is followed by the gray scale front
and then the gray scale back.

X9 Rules

The required presence of the gray scale images is based on upon the “grayScaleImages” parameter
within your x9 rules definition. This value must be defined as follows:

none The x9 file will have bitonal images only; gray scale images are not allowed.

front Each item must have a single gray scale image which is the front image. This implies
that each item will have three 50/52 sequences.

front_back Each item must have two gray scale images which are the front and back images
respectively. This implies that each item will have four 50/52 sequences.

optional Each item may (or may not) have gray scale images. Each item must have a minimum
of two and a maximum of four 50/52 sequences. The gray scale front image must be in
relative position three when present. The gray scale back image must be in relative
position four when present.

Please reference our x9rules_CPA_GrayScale.xml definition for a sample as to how to enable gray
scale image validation as x9 rules variant.

<?xml version="1.0" encoding="UTF-8"?>

<x9rules>

 <x9Controls>

 <x9Specification>CPA 015 GrayScale</x9Specification>

 <characterSet>Ebcdic</characterSet>

 <maximumChecksPerFile>40000</maximumChecksPerFile>

 <fieldZeroPresence>required</fieldZeroPresence>

 <fieldZeroFormat>bigEndian</fieldZeroFormat>

 <dateMinimumYear>2000</dateMinimumYear>

 <dateMaximumYear>2099</dateMaximumYear>

 <dateWindowMinusDays>1095</dateWindowMinusDays>

 <dateWindowPlusDays>95</dateWindowPlusDays>

 <userFieldsValidated>false</userFieldsValidated>

 <reservedFieldsValidated>false</reservedFieldsValidated>

 <grayScaleImages>front_back</grayScaleImages>

 <multipleLogicalFilesAllowed>false</multipleLogicalFilesAllowed>

 <iclCollectionTypes>=01</iclCollectionTypes>

 <iclRecordTypeIndicators>=E|I</iclRecordTypeIndicators>

 <iclrCollectionTypes>=03|04|05|06</iclrCollectionTypes>

 <iclrRecordTypeIndicators>=E|I|F</iclrRecordTypeIndicators>

 </x9Controls>

 <basis>

 <base>x9rules_x9.100-187_CCD.xml</base>

 </basis>

 <overrides>

 </overrides>

</x9rules>

TIFF Rules

TIFF validation just include separate sections that are used to validate TIFF tags within bitonal versus
gray scale images. Please reference our tiffrules_GrayScale.xml definition for a sample as to how to
define gray scale image validation within our tiff rules.

<?xml version="1.0" encoding="UTF-8"?>

<tiffrules>

<tiffControls>

<endianFormat>either</endianFormat>

<ifdOnWordBoundary>false</ifdOnWordBoundary>

<ascendingTagsRequired>true</ascendingTagsRequired>

<duplicateTagsAllowed>false</duplicateTagsAllowed>

<privateTagsAllowed>true</privateTagsAllowed>

<privateDuplicateTagsAllowed>false</privateDuplicateTagsAllowed>

<multiStripAllowed>true</multiStripAllowed>

<validateEOFB>false</validateEOFB>

<maximumEofbZeroPadBytes>0</maximumEofbZeroPadBytes>

<imageMinWidth>4.100</imageMinWidth>

<imageMaxWidth>10.500</imageMaxWidth>

<imageMinHeight>1.752</imageMinHeight>

<imageMaxHeight>5.700</imageMaxHeight>

<applyIqaRules>false</applyIqaRules>

<applyIqaToFrontOnly>true</applyIqaToFrontOnly>

<frontTooLight>2.660</frontTooLight>

<frontTooDark>90.000</frontTooDark>

<backTooLight>0.380</backTooLight>

<backTooDark>90.000</backTooDark>

</tiffControls>

<tiffEdits>

<tiffEdit>

<tag>254</tag>

<type>LONG</type>

<count>1</count>

<values>=0</values>

</tiffEdit>

<tiffEdit>

<tag>255</tag>

<type>SHORT</type>

<count>1</count>

<values>=1</values>

</tiffEdit>

<tiffEdit>

<tag>256</tag>

<type>SHORT_LONG</type>

<count>1</count>

<rule>nonzero</rule>

</tiffEdit>

<tiffEdit>

<tag>257</tag>

<type>SHORT_LONG</type>

<count>1</count>

</tiffEdit>

<tiffEdit>

<tag>258</tag>

<type>SHORT</type>

<count>1</count>

<values>=1</values>

</tiffEdit>

<tiffEdit>

<tag>259</tag>

<type>SHORT</type>

<count>1</count>

<values>=4</values>

</tiffEdit>

<tiffEdit>

<tag>262</tag>

<type>SHORT</type>

<count>1</count>

<maximum>1</maximum>

</tiffEdit>

<tiffEdit>

<tag>263</tag>

<type>SHORT</type>

<count>1</count>

<values>=1</values>

</tiffEdit>

<tiffEdit>

<tag>266</tag>

<type>SHORT</type>

<count>1</count>

<values>=1|2</values>

<variance>=2</variance>

</tiffEdit>

<tiffEdit>

<tag>273</tag>

<type>SHORT_LONG</type>

</tiffEdit>

<tiffEdit>

<tag>274</tag>

<type>SHORT</type>

<count>1</count>

<values>=1</values>

</tiffEdit>

<tiffEdit>

<tag>277</tag>

<type>SHORT</type>

<count>1</count>

<values>=1</values>

</tiffEdit>

<tiffEdit>

<tag>278</tag>

<type>SHORT_LONG</type>

<count>1</count>

<rule>tag278RowsPerStrip</rule>

</tiffEdit>

<tiffEdit>

<tag>279</tag>

<type>SHORT_LONG</type>

</tiffEdit>

<tiffEdit>

<tag>282</tag>

<type>RATIONAL</type>

<count>1</count>

<values>=200|240</values>

</tiffEdit>

<tiffEdit>

<tag>283</tag>

<type>RATIONAL</type>

<count>1</count>

<values>=200|240</values>

</tiffEdit>

<tiffEdit>

<tag>284</tag>

<type>SHORT</type>

<count>1</count>

</tiffEdit>

<tiffEdit>

<tag>293</tag>

<type>LONG</type>

<count>1</count>

<values>=0</values>

</tiffEdit>

<tiffEdit>

<tag>296</tag>

<type>SHORT</type>

<count>1</count>

<values>=2</values>

</tiffEdit>

<tiffEdit>

<tag>320</tag>

<type>SHORT</type>

<rule>notAllowed</rule>

</tiffEdit>

<tiffEdit>

<tag>321</tag>

<type>SHORT</type>

<rule>notAllowed</rule>

</tiffEdit>

</tiffEdits>

<mandatoryTiffTags>

<tag>256</tag>

<tag>257</tag>

<tag>259</tag>

<tag>262</tag>

<tag>273</tag>

<tag>278</tag>

<tag>279</tag>

<tag>282</tag>

<tag>283</tag>

</mandatoryTiffTags>

<tiffTagDescriptions>

<!--

 <tiffTag> <tag>254</tag> <description>NewSubfileType</description> </tiffTag>

 -->

</tiffTagDescriptions>

</tiffrules>

X9 MessagesX9 Messages

Error messages can become a complex topic, especially when there is a need to dramatically customize
them on a case-by-case basis. You will need to read this topic in its entirety to fully understand all of
available options.

The message system itself is designed in a manner that allows it to be manipulated by X9Assist users,
through the Message Editor and Configuration Editor, which are UI editors that manipulate the various
xml files that are used to control the underlying error messaging process.

Although X9Ware-SDK users can leverage these editors to control the error messaging subsystem, they
can also use the X9Ware-SDK API to more fully control error messages within the runtime
environment. This direct use of message assignments, via the X9Ware-SDK API, can be more straight
forward way to achieve specific needs.

Message XML

The messages XML document defines all errors that can be originated within the environment. Each
message has a logical name and an associated severity and description. Messages are defined with the
following XML elements:

Xml

Element

Usage Presence Values Example

<id> ID is used to logically identify each
error message.

Mandatory Internally
assigned.

<id>bindFailure</
id>

<sev> Assigns the severity associated with
this error. The available values are:
Severe, Error, Warn, Info, and
Ignore. Messages that are assigned
as Ignore are not reported as errors.

Mandatory Severe

Error

Warn

Info

Ignore

<sev>Error</sev>

<desc> Error description which is the text
that is inserted into the error
message for this error condition.

Mandatory Must be
defined for
each error.

<desc>configuration
bind failure</desc>

<recordType> Record type for this error message.
There can be multiple definitions for
the same message, with different text
applied to various record types.

Optional The relevant
record type.

<recordType>1</
recordType>

<fieldName> Field name for this error message.
Record type is required when using
field name. There can be multiple
definitions for the same message,
with different text applied to various
record types / field name
combinations.

Optional The relevant
field name.

<fieldName>Immedi
ate
Origin</fieldName>

<pattern> The message pattern that will be
applied to this message.

Optional See the pattern
topic (below)
for more
information as
to how this
string is
defined.

<format> Additional information as to how the
message should be formatted. These
values provide further direction as to
how fields are populated within the
pattern. A value of “full” indicates
that all fields (that are present) will

Optional Full
Sparse
Plain

<format>Plain</
format>

Xml

Element

Usage Presence Values Example

be populated, while a value of
“plain” indicates that the message
will be limited to just the message
text itself. A value of “sparse”
indicates that the message text and
comments will be included. Default
is full.

An example is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<x9errors>

<error> <id>bindFailure</id> <sev>Error</sev>

 <desc>configuration bind failure</desc>

 </error>

…...................

…...................

</x9errors>

System Messages

System messages are stored in the “systemMessages.xml” file which is stored within the X9Ware-SDK
JAR as embedded resources, in location / resources / rules / messages /. These are the standard system
messages, and are designed to be utilized as distributed. The X9Ware-SDK expects these messages to
remain as-is, and not modified to meet specific user objectives.

Override Messages

Override message files are stored in separate xml files and are intended to contain user message
overrides, where those assignments are different than the standard messages that are stored in the
“systemMessages.xml” definition. An override message file is applied on top of the system messages
themselves, which means that they can either replace or add to that core message set. Using override
messages is an important part of our application design, since it allows your overrides to be
independent of those messages that are distributed with the X9Ware-SDK. This has several benefits.
First is that you can easily manage your overrides, since they are isolated and separately defined.
Second is that this simplifies the process of going to a new release, since you do not need to be as
concerned about messages that have been added or removed with a new X9Ware-SDK code base.

Full / Sparse / Plain

Each message has an assigned format, which is used to control the fields that are attached to the
message via the pattern. The message format is provided for convenience, since it can be used to limit

the fields that are attached to a message without the need to assign a unique pattern. Format must be
one of the following:

• Full – messages will have all available fields (those that are non-blank) attached to the resulting
message, per the message pattern.

• Sparse – messages will have a reduced set of fields assigned, in the interest of brevity.

• Plain – messages will contain the text only.

Message Patterns

Message patterns are used to define how error messages are formatted. The patterns contain both static
strings (which are copied directly into the constructed messages) as well as replacement fields (which
are substituted with data from the current error being thrown).

Message patterns can be defined at multiple levels within the environment:

• Global – the global message pattern is applied to all messages that are not assigned a pattern
through one of the lower levels.

• Specific error identifier – the pattern is assigned for a specific message identifier.

• Specific error identifier and record type – the pattern is assigned for a specific message
identifier and record type.

• Specific error identifier, record type, and field name – the pattern is assigned for a specific
message identifier, record type, and field name.

Fields that are available for building a message pattern are defined in X9MessageManager as public,
which allows an application program to use these strings to build a custom pattern, for those situations
where the standard pattern must be changed.

The “|” character is used to as a separator to divide the message pattern into a series of fields. Each
field is included in the constructed message when the underlying data is present, but is omitted when
the data for that particular fields is not present. The use of each supported field type is optional. You
can omit a particular field when it is not desirable. The pattern also controls the order that is used to
formulate the resulting error message. Through this facility, you have complete control over the fields
that are used to build an error message and the order that message is constructed.

Here is an example of how a message pattern might be defined:

|{Prefix}|{Line}|field {RecordDotField}|{Name}|position {Position}|{Description}|value
'{FieldValue}'|expecting '{ExpectedValue}()'|{Comments}|failed {Reason}|[{Sev}]|

Within the X9Ware-SDK, the API can be used to define a message pattern. Here is the standard
message pattern as defined in X9MessageManager:

public static final String DEFAULT_MESSAGE_PATTERN = ESEPARATOR + PREFIX +
ESEPARATOR + LINE_NUMBER + ESEPARATOR + "field " +
RECORD_DOT_FIELD + ESEPARATOR + FIELD_NAME + ESEPARATOR +

"position " + FIELD_POSITION + ESEPARATOR + ERROR_DESCRIPTION +
ESEPARATOR + "value " + QUOTE_MARK + FIELD_VALUE + QUOTE_MARK +
ESEPARATOR + "expecting " + QUOTE_MARK + EXPECTED_VALUE +
QUOTE_MARK + ESEPARATOR + ERROR_COMMENTS + ESEPARATOR +
"failed " + FAILED_REASON + ESEPARATOR + "[" + SEVERITY + "]" +
ESEPARATOR;

Here are the static strings that can be used to define a custom message pattern:

public static final String PREFIX = "{Prefix}"; // typically "record" or "line"
public static final String LINE_NUMBER = "{Line}";
public static final String RECORD_DOT_FIELD = "{RecordDotField}";
public static final String RECORD_TYPE = "{Record}";
public static final String FIELD_NUMBER = "{Field}";
public static final String FIELD_NAME = "{Name}";
public static final String FIELD_POSITION = "{Position}";
public static final String FIELD_START = "{Start}";
public static final String FIELD_END = "{End}";
public static final String FIELD_LENGTH = "{Length}";
public static final String FIELD_VALUE = "{FieldValue}";
public static final String EXPECTED_VALUE = "{ExpectedValue}()";
public static final String ERROR_DESCRIPTION = "{Description}";
public static final String ERROR_COMMENTS = "{Comments}"; // includes value ??
public static final String ERROR_NAME = "{Name}";
public static final String FAILED_REASON = "{Reason}";
public static final String SEVERITY = "{Sev}";
public static final String SEVERITY_WARN_OR_LESS = "{SevWarnOrLess}";

Message Files in JAR versus File System

Messages can be defined in one of two locations.

• First is the within the X9Ware-SDK JAR, as part of the resources bundle. To include message
files in the JAR, users must unzip the JAR itself, add the new or modified XML file into the
appropriate folder location, and then use a compatible ZIP process to rebuild the JAR. You can
do some internet searches to find good examples of the tools that can be used to perform these
tasks in a manner that is compatible with the JVM class loader.

• Second is within the external file system, where XML files can be stored in a similar folder
structure, just externally from the X9Ware-SDK JAR. This approach has both advantages and
disadvantages. On the plus side, the XML components can be quickly and easily updated.
However, storing these separately, can be negative in that it complicates the overall runtime
environment.

Message Pattern Reuse

Within the message XML definitions, a message pattern can be assigned a logical name when it is
initially defined, and then that name can be used to subsequently reference the pattern. This approach is
very beneficial when the same message pattern is going to be repetitively reused. It allows the message

pattern to be defined just once. This creates a single version of the pattern, which simplifies both
definition and ongoing maintenance.

The message pattern reuse facility is leveraged by assigning the logical name when it is is first used,
and then using that name as proxy for the pattern when subsequently used.

You can define different message patterns to meet different error message requirements. You would
then assign a logical name to each pattern which describes the intent of the message pattern within your
application.

The pattern must be defined before it can be referenced. The initial definition will look like
<pattern>patternName=|patternString|</pattern>, while subsequent references will then look like
<pattern>patternName</pattern>.

Message Configurations

Before running a file validation, the X9Ware-SDK requires that the application first bind to a
configuration. Each such configuration is associated with a set of xml rules and as well as a set of xml
messages. IN this fashion, users can define their own configurations, where a configuration can be
associated with their own custom set of error messages where these xml messages are actually
overrides that sit on top of the standard message file.

X9Ware-SDK applications are required to bind to a configuration, using code something as follows:

 if (!sdkBase.bindConfiguration(X9.ACH_CORE_VALIDATIONS_CONFIG)) {
 throw X9Exception.abort("bind unsuccessful");
 }

The Configuration Editor (available within X9Assist) can be used to update the config.xml file, which
is where configurations are defined. A given environment can define one or more configurations that
are additions to the standard configuration set.

In addition to using the Configuration Editor, X9Ware-SDK applications can also use the API to insert
configurations directly into the environment, thus eliminating the need to manipulate config.xml itself.
This is done using X9ConfigManager and addMapEntry().

Using the Message and Configuration Editors

The X9Assist Message Editor is used to maintain a message xml file that is an override to the standard
system messages. Individual message xml entries are saved only when they are different from the
standard system definition. The Message Editor panel allows you to enter these and save them to an
xml file of your choice. The resulting messages xml file can then be inserted into the JAR or referenced
externally in the file system. These message xml files must be associated within a configuration
definition to be activated.

The X9Assist Configuration Editor is used to maintain a configuration xml file that contains user
entries, which are an extension to the standard system entries. The resulting xml file is saved as
config.xml by the editor.

Using the X9Ware-SDK API to Insert Message Overrides

X9Ware-SDK applications can use the X9Ware-SDK API to dynamically insert messages into the
runtime environment. This direct approach can perhaps be the most straight forward when using the
SDK. Unique patterns can be defined and assigned to messages as required, allowing the messages to
be very targeted to specific error situations. Also note that message patterns are ready-only (they are not
modified), so the same pattern can be shared with multiple message definitions. Sample code to
accomplish this (using the X9Ware-SDK API) is as follows:

/*

 * Store override messages into the message manager lookup map. This runtime map is
 * initially populated based on the currently loaded configuration, which can now be
 * further manipulated. These overrides can be either replacements for the standard
 * message, or additions at the record or record/field levels. Each override is
 * associated with the X9Msg enumerator that is related to the message definition in the
 * systemMessages.xml definition, which defines the standard message that would
 * otherwise be issued on a default basis. Each override contains the new message to be
 * issued and the severity level to be assigned. Overrides can be global (applied to all
 * such messages) or can be tied to a specific record type and optional field name.
 *
 */
final X9MessageManager x9messageManager = sdkBase.getMessageManager();
x9messageManager.putMessage(// override using text/recordType/severity

new X9Message(X9Msg.lessThanMinimum, "less than minimum date",
X9Ach.BATCH_HEADER, "EFFECTIVE ENTRY DATE",
X9C.SEVERITY_WARN));

x9messageManager.putMessage(// override using text/recordType/fieldName/severity
new X9Message(X9Msg.mandatory, "company identifier is missing",

X9Ach.BATCH_CONTROL, "COMPANY IDENTIFICATION",
X9C.SEVERITY_WARN));

/*
 * Store an even more complex override message that includes an alternate pattern, which
 * will be used to format this specific error.
 */
final char separator = X9MessageManager.ESEPARATOR;
final String overridePattern = separator + X9MessageManager.PREFIX + separator

+ X9MessageManager.LINE_NUMBER + separator + "field "
+ X9MessageManager.FIELD_POSITION + separator
+ X9MessageManager.ERROR_DESCRIPTION + separator + "["
+ X9MessageManager.SEVERITY_WARN_OR_LESS + "]" + separator;

x9messageManager.putMessage(
new X9Message(X9Msg.achIncorrectHash, "file hash total is incorrect",

X9Ach.FILE_CONTROL, "ENTRY HASH", overridePattern,
X9C.SEVERITY_ERROR));

Using the X9Ware-SDK API to Insert Message Overrides from XML

X9Ware-SDK applications can also package their message overrides within an override xml file
which can then be used as an overlay on top of systemMessages.xml. The xml file can be built
using our Message Editor, or can be constructed through other means such as an xml or text
editor.

The above example shows three messages being inserted individually into the runtime
environment using the X9Ware-SDK API. These messages could instead be defined as an xml
file, which would be structured as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<errorMessages>
 <copyright>X9Ware LLC 2012-2018</copyright>
 <company>X9Ware LLC</company>
 <release>R4.06</release>
 <buildDate>2021.03.04</buildDate>
 <timestamp>20210304_090217_975</timestamp>
 <basis></basis>
 <pattern>[default]</pattern>
 <messages>
 <error>
 <id>achIncorrectHash</id>
 <sev>Error</sev>
 <desc>File hash total is incorrect</desc>
 <recordType>9</recordType>
 <fieldName>Entry Hash</fieldName>
 <pattern></pattern>
 <format>Full</format>
 <type>User</type>
 </error>
 <error>
 <id>lessThanMinimum</id>
 <sev>Warn</sev>
 <desc>Less than allowed minimum value</desc>
 <recordType>0</recordType>
 <fieldName></fieldName>
 <pattern></pattern>
 <format>Full</format>
 <type>User</type>
 </error>
 <error>
 <id>mandatory</id>
 <sev>Warn</sev>
 <desc>Company identifier is missing</desc>
 <recordType>8</recordType>
 <fieldName>Company Identification</fieldName>

 <pattern>|{Prefix}|{Line}|field {Position}|{Description}|[{SevWarnOrLess}]|</pattern>
 <format>Full</format>
 <type>User</type>
 </error>
 </messages>
</errorMessages>

The xml file can then be defined either externally (in runtime folder / rules / messages /) or
internally as a resource (in jar folder / rules / messages /). From either of these locations, the
message override file can be loaded using the message manager, as follows:

try {
final X9MessageManager x9messageManager = sdkBase.getMessageManager();
x9messageManager.loadResourceFile("messageOverrides.xml");

} catch (final Exception ex) {
throw X9Exception.abort(ex);

}

In this situation, the following logging is issued when the standard system messages are loaded:

2021-03-04 09:40:43.028 [INFO] xml loaded(systemMessages.xml) isContentLogging(false)
class(com.x9ware.beans.X9MessageBean) from(com.x9ware.jaxb.X9Jaxb.logUnmarshalledResults:522)
(com.x9ware.tools.X9MiniLog.writeToLog:472)
2021-03-04 09:40:43.091 [INFO] xml messageCount(272) fileName(systemMessages.xml)
systemMessageCount(272) overrideMessageCount(0) testsetMessageCount(0)
(com.x9ware.messaging.X9MessageManager.loadResourceFile:285)

Alternatively the following logging is issued when the override messages are loaded. This
logging shows the override message count as two, since one of the messages replaced a
standard message and the other two were net additions.

2021-03-04 09:40:43.216 [INFO] xml loaded(messageOverrides.xml) isContentLogging(false)
class(com.x9ware.beans.X9MessageBean) from(com.x9ware.jaxb.X9Jaxb.logUnmarshalledResults:522)
(com.x9ware.tools.X9MiniLog.writeToLog:472)
2021-03-04 09:40:43.218 [INFO] xml messageCount(274) fileName(messageOverrides.xml)
systemMessageCount(272) overrideMessageCount(2) testsetMessageCount(0)
(com.x9ware.messaging.X9MessageManager.loadResourceFile:285)

X9Ware SDK User Guide X9Ware LLC

Bitonal Image Thresholding

Bitonal image thresholding is the process used to convert gray scale images into binary images, where
each pixel is classified as either black or white based on its intensity value. There are a variety of
imaging algorithms to accomplish this, where each of these methods utilize their own core process to
identify one ore more threshold values. There can be a single threshold that applies to the entire image,
or the algorithms can be a more complex where there are multiple thresholds, where each is adapted to
the local area within the image. Pixels with intensities above the threshold are assigned to one class
(usually white), while pixels with intensities below or equal to the threshold are assigned to the other
class (typically black).

Bitonal Image Challenges

Significant challenges exist in this process. Gray scale images may contain noise that can affect the
accuracy and the output image that is created by the thresholding process. To address this, pre-
processing steps like smoothing or filtering can be applied to reduce noise before applying the
thresholding. Another challenge arises from a multitude of issues with the input image itself. This can
be caused by scanner noise, image artwork, complex backgrounds, camera problems with mobile
deposits, and varying lighting conditions when the image is captured. All of these can lead to uneven
intensity values, which can result in undesirable results where images are washed out to black making
the output image unusable. Adaptive thresholding methods attempt to mitigate this issue by adjusting
the threshold locally based on image content can mitigate this issue.

Within our SDK and X9Utilities, we have implemented a number of thresholding methods that are
sequentially, in an attempt to generate a usable output image despite initial image capture issues. This is
accomplished by applying a variety of thresholding techniques and evaluation the resulting image for
usability. This process ultimately selects the image that, based on our inspection, appears to provide the
most usable output image.

Bitonal Thresholding Techniques

Our thresholding process first invokes the standard Java ImageIO conversion from gray scale to bitonal
that is provided by the JDK. This result is accepted when the output image is determined to be usable.
We otherwise then attempt a variety of additional thresholding techniques:

• Otsu's thresholding, named after Nobuyuki Otsu, which is a widely used automatic thresholding
technique for image segmentation. The primary goal of Otsu's method is to find an optimal
threshold that minimizes the intra-class variance while maximizing the inter-class variance of
pixel intensities in a gray scale image. This threshold effectively separates the image into two
classes, typically foreground and background, resulting in a binary image. The algorithm
calculates the histogram of pixel intensities in the gray scale image and then iterates through all
possible threshold values. For each threshold, it computes the intra-class variance, representing

Page 122 of 166

X9Ware SDK User Guide X9Ware LLC

the spread of intensities within each class, and the inter-class variance, representing the
difference between the mean intensities of the two classes. The threshold that maximizes the
ratio of inter-class variance to intra-class variance is chosen as the optimal threshold. Otsu's
method is particularly effective in scenarios where there are distinct intensity peaks
corresponding to different image regions. It is robust in handling images with bimodal intensity
distributions. This automated thresholding technique is widely employed in various image
processing applications, including medical image analysis, document processing, and computer
vision tasks, offering a data-driven approach for effective image segmentation.

• Li's thresholding which is an automatic thresholding method used for image segmentation,
particularly in scenarios where Otsu's method may not perform optimally. Developed by Cheng-
Chang Li, this technique aims to find a threshold that minimizes the cross-entropy between the
original grayscale image and the resulting binary image. Unlike Otsu's method, Li's
thresholding is suitable for images with uneven illumination or non-uniform background. Li's
method involves computing the histogram of pixel intensities and iteratively determining the
threshold that minimizes the cross-entropy. Cross-entropy is a measure of the dissimilarity
between two probability distributions, and in this context, it represents the dissimilarity between
the grayscale image and the binary image based on the chosen threshold. One of the advantages
of Li's thresholding is its adaptability to images with varying lighting conditions, making it
suitable for a broader range of applications. This method has found use in fields such as medical
image analysis, document processing, and industrial quality control. As with any thresholding
technique, it is essential to evaluate its performance on specific image characteristics and adjust
parameters accordingly for optimal results in diverse imaging scenarios.

• Mean thresholding which is a simple yet effective technique for image segmentation,
particularly in cases where the image exhibits a relatively uniform background. This method
calculates a threshold based on the mean intensity of the pixel values in the grayscale image.
The idea is to classify pixels as foreground or background depending on whether their intensity
is above or below the computed mean threshold. The process involves calculating the mean
intensity of all pixels in the image and using this value as the threshold. Pixels with intensities
greater than the mean are assigned to one class (often considered foreground), while pixels with
intensities less than or equal to the mean are assigned to the other class (typically background).
This straightforward approach makes mean thresholding computationally efficient and easy to
implement. However, mean thresholding may be sensitive to variations in image background
and lighting conditions. It may not perform well in cases where the image has a non-uniform
background or contains significant noise. As a result, mean thresholding is often most effective
in situations where the image exhibits consistent illumination and a clear intensity distinction
between foreground and background. Careful consideration of image characteristics is essential
when choosing an appropriate thresholding method for optimal segmentation results.

Page 123 of 166

X9Ware SDK User Guide X9Ware LLC

• Yen's thresholding method, proposed by Chin Yen in 1995, which is an automatic image
thresholding technique designed to address challenges presented by uneven illumination and
varying backgrounds in gray scale images. It aims to find an optimal threshold that maximizes
the criterion known as the Yen's entropy. This criterion is based on the information entropy, a
measure of uncertainty or disorder in a probability distribution. The Yen thresholding algorithm
computes the histogram of pixel intensities and then iteratively evaluates the entropy for all
possible threshold values. The threshold that maximizes the Yen's entropy criterion is selected
as the optimal threshold for segmenting the image into two classes. Yen's method is particularly
effective in scenarios where Otsu's method may struggle, such as images with uneven
illumination or complex backgrounds. By considering the information entropy, Yen's
thresholding provides a robust solution for images with diverse intensity distributions. This
technique has found applications in various fields, including medical image analysis, document
processing, and object recognition. Its adaptability to different image characteristics and its
ability to handle challenging lighting conditions make Yen's thresholding a valuable tool in
automated image segmentation tasks, offering improved performance in situations where
traditional methods may fall short.

• Adaptive thresholding, which is a versatile image segmentation technique that addresses
challenges posed by variations in illumination across an image. Unlike global thresholding
methods, which use a single threshold for the entire image, adaptive thresholding dynamically
adjusts the threshold locally based on the pixel values in the vicinity of each image point. The
algorithm divides the image into smaller regions or tiles, and a distinct threshold is computed
for each region. This enables adaptive thresholding to handle images with uneven lighting or
complex backgrounds more effectively. Common methods for adaptive thresholding include
mean-based, Gaussian-based, and Sauvola's method, each with its own approach to computing
local thresholds. Mean-based adaptive thresholding calculates the threshold for each region by
considering the mean intensity of the pixels within that region. Similarly, Gaussian-based
methods use the weighted average of pixel intensities, giving more significance to the central
pixels. Sauvola's method takes into account both the mean and the standard deviation of pixel
intensities to adaptively compute thresholds. Adaptive thresholding is particularly useful in
applications such as document processing, character recognition, and medical imaging, where
lighting conditions may vary across an image. By adapting to local characteristics, this
technique enhances the accuracy of segmentation in diverse scenarios, offering a more robust
solution to challenges presented by complex image structures and lighting variations.

• Niblack thresholding is an adaptive thresholding technique designed to address challenges in
image segmentation posed by variations in illumination and noise. Proposed by Wayne Niblack
in 1986, this method computes local thresholds for each pixel based on the mean and standard
deviation of pixel intensities within a local neighborhood or window. The algorithm divides the
image into non-overlapping windows and calculates a threshold for each window. Pixels with

Page 124 of 166

X9Ware SDK User Guide X9Ware LLC

intensities higher than the local mean plus a user-defined parameter (typically a multiple of the
standard deviation) are classified as foreground, while pixels below this threshold are classified
as background. This adaptive approach makes Niblack thresholding well-suited for images with
uneven illumination or varying background conditions. One advantage of Niblack thresholding
is its sensitivity to local image characteristics, enabling it to handle variations in lighting and
noise. However, it may be sensitive to the choice of parameters and may not perform optimally
in all scenarios. Despite this, Niblack thresholding has found applications in document image
analysis, where text may be present against varying background intensities, and in scenarios
where local adaptability is crucial for accurate image segmentation. Experimentation and
parameter tuning are often necessary to optimize its performance for specific imaging
conditions.

Our SDK (class X9ImageThresholding) and X9Utilities products utilize all of these thresholding
techniques to achieve best possible results. We have done a lot of research and subsequent work to
implement a very good solution for these issues. We are interested in your feedback as to how our
current solution works and can be be further improved.

Page 125 of 166

X9Ware SDK User Guide X9Ware LLC

MICR Line Format and Standards

Magnetic Ink Character Recognition (MICR) technology was adopted in the US in the late 1950's as a
standard mechanism to electronically and accurately read check information using the technology that
existed at that time. The encoded information identifies the financial institution that issued the check
and the account that is associated with the transaction. Numerous standards are defined which identify
where the information must be printed and how it must be formatted.

The MICR line is printed using magnetic ink or toner, which is read using a MICR reader. Use of
magnetic ink allowed the data to be read even when it was written over or otherwise obscured by
subsequent information that was printed on the physical check.

Newer technologies allow information to be more easily captured using Optical Character Recognition
(OCR). Many devices today will do a combination of MICR and OCR reads which then compare the
results for improved quality.

MICR Line Standards

There are standards that govern the placement and format of some fields of information printed in the
MICR data of a check. The fact that standards do not cover the location or meaning of all the
information contained in the MICR data of a check presents a problem for parsing operations. The
process of inspecting the MICR data information and separating particular fields of information can be
done by the MICR reader or host application. In any case, a set of rules must be developed to separate
the various information fields. This will only work on checks whose MICR data format follows
industry conventions. Once the fields are separated, the information is reformatted for processing by an
on-line check processing and clearing service.

The MICR line contains 65 positions, numbered from right to left and grouped into four fields:

• Auxiliary On-Us
• Transit
• On-Us
• Amount

All checks have at least three of the fields (amount, On-Us, and transit number). Commercial checks
have an additional field on the left of the check, called the auxiliary On-Us field. Some checks also
have an external processing code (EPC) digit, located between the transit and auxiliary On-Us fields.
The amount and transit fields have a standardized content, while the contents of the On-Us fields can
vary to meet the individual bank's requirements.

Page 126 of 166

X9Ware SDK User Guide X9Ware LLC

MICR Line Parsing

The X9Ware SDK includes class X9MicrLineParser which includes our standard logic which will parse
captured MICR line data into their component fields. This class requires that you provide the characters
your MICR line symbols, since they can vary based on your scanner. The SDK also includes class
X9MicrParserFactory which can be used to allocate new X9MicrLineParser instances using the MICR
symbols that are present in an externally defined x9header XML file.

MICR Line Characters

MICR Line Fields

MICR line fields (from right to left on the check) are as follows:

Field # Field Name MICR
Positions

Description

1 Amount 1 – 12 Amount with leading and trailing E13B amount symbols. This
field is typically not encoded in the image environment.

2 On-Us 13– 32 On-Us identifies the customer account and may contain other
information such as the check serial number, transaction code,
or both. The last position of this field is usually followed by a

Page 127 of 166

X9Ware SDK User Guide X9Ware LLC

Field # Field Name MICR
Positions

Description

blank in position 32.

3 Transit 33 – 43 Nine-character routing number with leading and trailing E13B
transit symbols. The transit field identifies the payor financial
institution. On a check having four fields, the transit field is
second from the left. However, shorter personal checks will not
have an Auxiliary On-Us field, and in that situation the transit
field is the left-most field of the three fields that are present.
US (FRB) routing numbers will typically be a nine-digit
number where he last digit is calculated using a MOD10
algorithm. You will also see US routings formatted as xxxx-
xxxx (with an embedded dash). You may also encounter
Canadian items which are formatted as xxxxx-xxx.

4 EPC 44 The external processing code (EPC) is an optional field that is
encoded between the transit and auxiliary On-Us fields in
position 44. When present, this field indicates that the
document is eligible for special processing.

5 Auxiliary
On-Us

45-65 The auxiliary On-Us field is an optional field which is
typically used by the payor bank for business check serial
numbers or other internal information. When present, it is left-
most on the check in MICR line positions 45 through 65.
(actual number of potential characters is dependent on the
physical width of the item). Aux OnUs is not present on
personal checks because of physical size of those items.

MICR Line Layout

Page 128 of 166

X9Ware SDK User Guide X9Ware LLC

MICR Line RegEx

RegEx matches are usually “greedy” so they will match as many characters as possible. This means
using a wildcard character can be used to match everything. For example,

• A* would match all of the A’s in AAAAAAAAAAAAAAAAAAAAAB,
• A+ would also match them, A would match the first one,
• A{10} would match the first 10,
• And so on.

Commonly used RegEx expressions:

(?<=) - this looks for a match to whatever terms are after the = but does not return it, when put
in front of a search it has to match this first. Effectively acts as a left boundary.

(?=) - this looks for a match to whatever terms are after the = but does not return it, when put
after of a search it has to match this last. Effectively acts as a right boundary.

\d = any digit.

Page 129 of 166

X9Ware SDK User Guide X9Ware LLC

[A] = match any A.

[ABC] = match any A, B, or C character.

[0-9] = match any digit from 0-9.

[0-9]+ = match all digits in a row, minimum 1.

[0-9]* = match any number of digits in a row (including none).

^ = start of a line.

$ = end of a line.

\ = used as an escape character, e.g. \\ matches the \ character.

? = after a character or ()? Makes that term optional (greedy means it will include it if it there).

() = group terms and also creates the bracket contents as a variable (variable is referenced as a
number based on the order of the opening (e.g. first () is 1, and so on, can be inside brackets
themselves.

\1 $1 = depends on implementation but can be used to reference the value of the corresponding
term in brackets.

Based on the above:

Field RegEx Regex Notes

Amount (?<=B)\d+ Matches the part of a string preceded by B that
consists of only numbers - it will get all the
numbers and stop when it reaches anything not a
number.

On-Us (?<=A)[0-9DC]+(?
=C|B|$)

Matches the part of a string preceded by A, that
contains numbers, C, or D and ends with B, C or
the end of the line.

Transit [0-9D]+(?=A) Matches the part of a string that precedes A and
has numbers or D.

EPC (?<=^|B)[0-9](?=A) Matches a single number that is preceded by B
or the start of the line, and is followed by A.

Aux On-Us [\dD]+(?=CA) Matches the part of a string that consists of
digits and D, and is followed by CA.

Page 130 of 166

X9Ware SDK User Guide X9Ware LLC

Further RegEx Reading

https://www.regular-expressions.info/

https://regexr.com/

Page 131 of 166

https://www.regular-expressions.info/

X9Ware SDK User Guide X9Ware LLC

Appendix: HeaderXml

Many financial institutions and third party processors have implemented their own x9.37 requirements
and variants that are based (to varying degrees) on the x9.37 file standards. The process of generating
x9 files generically in the formats required for these processors becomes a complex task given the
numerous options and settings that are required.

X9Ware has addressed this need through our HeaderXml class which is implemented within the SDK
and leveraged by our X9Utilities product. HeaderXml define parameter values which control the
generation of an x9 file. HeaderXml specifically defines the various values that can be populated in the
file header, cash letter header, bundle header, and item records.

HeaderXml values are populated from an external XML file. Our long term goal is to provide the
options needed to create x9.37 files for virtually all financial institutions and third party processors that
use the x9.37 standard. We are largely met that goal today, since we are not aware of any banks with
options that we cannot support. This includes all options needed to populate header and trailer records,
various credit formats, various credit locations, and a wide variety of parameters that control the values
associated with item and image definitions. In alignment with our support goal, be aware that this
definition will change from release to release as we continue to improve upon this process and thus
expand the parameters. Although we will always make every attempt to retain compatibility with
current implementations, you should also design your application and support processes in a manner
where you can adapt to ongoing change.

When creating a new HeaderXml file, you should begin with the sample x9headers.xml as included in
our software installation. You can then review the field names within this xml file and refer to the user
guide for their specific purpose. If you are upgrading from a previous release, you can copy and paste
the values from your previous definition. Do this carefully since there is the potential that fields have
been moved within the parameters and that field names have been changed to improve clarity.

Editing HeaderXml

Our X9Validator and X9Assist desktop products include the HeaderXml937 Editor, which is tools that
can be used to edit, validate, and save HeaderXml definitions. This is the easiest way to create and
maintain your HeaderXml files. We highly suggest that all X9Utilities also have X9Validator, since it is
the best tool in the industry to validate the x9.37 files that are created by X9Utilities.

XML documents have a hierarchical structure and can conceptually be interpreted as a tree structure,
called an XML tree. All XML documents contain a root element (one that is the parent of all other
elements). The XML document then contains a series of elements, where each element can itself
contain sub-elements, text and attributes.

During the editing process, it is extremely important that the proper tools and file validations be
utilized to ensure that editing does not result in an invalid XML file structure. Without this, it is far too
easy to save a file that has unmatched XML control tags. When this happens, the XML file cannot be
successfully parsed and will ultimately result in an application “abort” when you attempt to use the file.

Page 132 of 166

X9Ware SDK User Guide X9Ware LLC

There are many XML editors that are available in the marketplace today that address these issues.
Many environments have chosen and implemented such tools, and you can certainly use your standard
tools when available. If you do not have an XML editor immediately available to you, we recommend
that you consider one of the following:

• Our X9Validator/X9Assist desktop products include the HeaderXml937 Editor that is targeted
specifically for viewing, creating, and modifying these HeaderXml files. Our editor understands
our XML format and makes it very easy to manipulate these files. The HeaderXml937 Editor is
a standard feature of X9Validator/X9Assist, and was added as part of our R4.05 release. We
highly suggest that you consider use of this tool. The functionality provided by the
HeaderXml937 Editor is described as the last topic in this user guide.

• Another popular tool is NotePad++ with the XML Tools plugin. This combination provides
immediate feedback on XML syntax and will not let you save an XML file with an invalid
hierarchical structure. NotePad++ with the XML Tools plugin will ensure that you have
matching tags within your XML document, and that using NotePad++ without the XML Tools
plugin is a regression back to a simple text editor. However, even with the plugin, NotePad++
cannot validate that the tags themselves are correct, as can be done by X9Validator/X9Assist.

• Another commonly used tool is the XML Notepad editor from Microsoft, which provides a
simple intuitive user interface for browsing and editing XML documents. It has similar + / - as
using NotePad++.

• Finally, you can revert to using a simple text editor such as Microsoft NotePad. However, doing
so forces you to assume complete responsibility for the XML document structure.

HeaderXml as Written to the Log

X9Utilities will write all current HeaderXml settings to the in the system log each time that they are
used by the “-write” function. You can use the system log for several determinations.

• You can determine the value that has been assigned to all HeaderXml fields.

• You can review the list of all possible fields which are available. This is extremely useful, since
it allows you to see any new parameters that have been added in recent releases.

• You can identify new HeaderXml fields which are available but are not present in the provided
xml definition.

The following shows a field value setting when the field is defined in the xml definition:

2015-12-03 15:19:50.549 [INFO] document(HeaderXml) fieldName(x9fileSpecification) value(x9.37)
(com.x9ware.dom.X9Dom.getFieldsUsingReflection:624)

The following shows a field which is assigned a default value when not defined in the xml:

2015-12-03 15:19:50.581 [INFO] document(HeaderXml)!fieldName(itemAddendumCount) default(0)
(com.x9ware.dom.X9Dom.getFieldsUsingReflection:624)

Page 133 of 166

X9Ware SDK User Guide X9Ware LLC

X9 File Structure

The created x9 file will consist of a single cash letter that is wrapped by a file header and file control
trailer. No bundles will exist when a file does not have any items. Bundles are automatically created
from the provided items. Individual bundle size is automatically limited by the identified bundle size
count.

Inclusion of Credits in Trailer Totals

There are unfortunately no industry wide standards as to how credits are included in bundle, cash letter,
and file control trailers. Specific actions to include credits in trailers are thus dependent upon the
current x9 file specification and variant being used.

The SDK must be able to both create and validate totals. For convenience, the flags which indicate how
credits impact trailers are defined in the x9 headers XML and then replicated in our x9 rules. Setting
either of these will result in credits being included in your trailer counts and amounts.

The SDK first interrogates the values defined by the x9.100-187-2013 specification which are
optionally present in the bundle, cash letter, and file control trailers to indicate if those specific record
types are to include credit counts. A value of “1” indicates that credits add to counts and amounts, while
a value of “0” indicates that credits do not add to counts and amounts. These values are take priority
over all other settings when present. Note that this standard is flexible but has several oddities. First is
that it creates the unusual situation where you might add credits to bundles and not to cash letters.
Second is that it does not support the situation where credits add to counts but not amounts.

The SDK otherwise uses our x9 headers XML and x9 rules definitions to determine when and how
credits impact the trailer records. There are separate flags to indicate if credits should be added to either
counts and/or amounts. Turning a flag on will roll credits through the various levels (bundle, cash letter,
and file control) for consistent balancing. There is no current capability to update one level and then
forcibly omit in others, since our design is to roll these accumulators through these hieratchies. The
SDK does support the ability to include credits in counts but to then exclude them from total amount,
which is used by some x9 variants.

HeaderXml Fields defined within the <info> group

The <info> group is used for change management documentation. These fields will be listed to the log
in support of problem determination but are otherwise not used.

XML
Group XML Field Name

Populated
Into Notes

<info> accountName Credit
52.19

Primarily used for
documentation, but also
inserted into the credit
image when
<creditImageDrawFront> is
true. When using credit
profiles, the account name

Page 134 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

should be redirected to the
profile and this field can
instead be set to something
generic like “various”.

<info> bankName Credit
52.19

Primarily used for
documentation, but also
inserted into the credit
image when
<creditImageDrawFront> is
true.

<info> author N/A Used for documentation
only.

<info> dateWritten N/A Used for documentation
only.

<info> dateModified N/A Used for documentation
only.

<info> comments N/A Used for documentation
only.

HeaderXml Fields defined within the <fields> group

The HeaderXml values that can be populated are defined below. This definition was substantially
changed with the R3.03 release so it must be reviewed closely.

XML
Group XML Field Name

Populated
Into Notes

<fields> x9fileSpecification N/A Identifies the x9 file specification to
be created. Default is "x9.37".

<fields> businessDate 10.05 Numeric; default is current
YYYYMMDD.

<fields> createDate 01.06,
10.06

Numeric; default is current
YYYYMMDD.

<fields> createTime 01.07,
10.07

Numeric and “0000” through “2359”;
default is current HHMM when
omitted. This value can also be
provided as an offset to the current
time. For example, a value of “+3”
will add three hours to the current
system time and that a value of “-2”

Page 135 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

will subtract three hours. Note that
providing a current time offset may
also update the current date.

<fields> batchProfile N/A Batch profile is used to assign a static
profile name which will default to “”.
Batch profiles are an advanced
function where the profile name
would typically be specified on each
incoming item CSV row. In those
situations, the items are reordered and
batched by profile, and the profile
name can be used to redirect certain
headerXml values to an external
properties file. However, it is also
possible to statically assign a single
batch profile name to the headerXml
file. When doing this, you can still
redirect certain field assignments to
an external properties file. An
example of usage would be
<batchProfile>customer.properties</b
atchProfile>.

<fields> fileStandardLevel 01.02 Default is “03”.

<fields> fileMode 01.03 Default is “T”.

<fields> fileOriginationRouting 01.05

<fields> fileOriginationName 01.10

<fields> fileDestinationRouting 01.04

<fields> fileDestinationName 01.09

<fields> fileIdModifier 01.11 If the fileIdModifier value is provided
as one character, then it represents the
specific value to be assigned. It
otherwise is the same of a
fileIdModifier xml file will be
referenced and used to assign a
rolling fileIdModified within the
current calendar date. This external
file reference can be provided on an
absolute (fully qualified) or relative
basis (location would be within the

Page 136 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

same folder where this headerXml
definition appears).

<fields> fileResendIndicator 01.08

<fields> fileUcdIndicator 01.14

<fields> fileCountryCode 01.12

<fields> fileUserField 01.13

<fields> cashLetterEceInstitutionRouting 10.04

<fields> cashLetterDestinationRouting 10.03

<fields> cashLetterIdentifier 10.10 Default (when this field is omitted) is
to create as “hhmmssSSS” which
satisfies the common requirement that
the cash letter identifier be unique for
a given day. There are several other
alternatives:

• “xxxxxxxx” (up to 8 character
string) which is directly
assigned to all cash letters.

• “sequential” which assigns an
incremented cash letter
identifier beginning with
“00000001”.

• “creditISN” which assigns the
rightmost 10 characters of the
credit item sequence number
to the bundle identifier. This
feature requires that
creditBeginsNewBundle is
true.

• “creditSerial” which assigns
the rightmost 10 characters of
the credit AuxOnUs serial
number to the bundle
identifier. This feature
requires that
creditBeginsNewBundle is
true.

• “%xxxx” (up to a 4 character
user string) which inserts the
variable length cash letter

Page 137 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

number at the beginning
making it unique. For
example, a value of “%BI”
assigns a value of “1BI” to the
first cash letter, while “%”
would simply assign a value
of “1”.

• “xxxx%” (up to a 4 character
user string) which inserts the
variable length cash letter
number at the end making it
unique. For example, a value
of “BI%” assigns a value of
“BI1” to the first cash letter.

• “#xxxx” (up to a 4 character
user string) which inserts the
current four character cash
letter number at the beginning
making it unique. For
example, a value of “#BI”
assigns a value of “0001BI” to
the first cash letter, while “#”
would simply assign a value
of “0001”.

• “xxxx#” (up to a 4 character
user string) which inserts the
current four character cash
letter number at the end
making it unique. For
example, a value of “BI#”
assigns a value of “BI0001” to
the first cash letter.

<fields> cashLetterContactName 10.11

<fields> cashLetterContactPhone 10.12 Numeric

<fields> cashLetterReturnsIndicator 10.14

<fields> cashLetterRecordTypeIndicator 10.08

<fields> cashLetterDocumentationTypeIndicator 10.09

<fields> cashLetterCollectionTypeIndicator 10.02

<fields> cashLetterFedWorkType 10.13

Page 138 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

<fields> cashLetterUserField 10.15

<fields> bundleItemCount N/A Default is 300.

<fields> bundleEceInstitutionRouting 20.4 Defaulted from the current cash letter
header when omitted.

<fields> bundleDestinationRouting 20.3 Defaulted from the current cash letter
header when omitted.

<fields> bundleIdentifier 20.07 Default (when this field is omitted) is
to create as YYMMDDHHMM which
is unique for a given calendar day for
the current destination. This setting
satisfies the common requirement that
the combination of bundle identifier
and bundle sequence number are
unique within a single x9 file. There
are several other alternatives:

• “xxxxxxxxxx” (up to 10
character string) which is
directly assigned to all
bundles.

• “sequential” which assigns an
incremented bundle identifier
beginning with
“0000000001”.

• “%xxxxxx” (up to a 6
character user string) which
inserts the variable length
bundle number at the
beginning making it unique.
For example, a value of
“%BI” assigns a value of
“1BI” to the first bundle,
while “%” would simply
assign a value of “1”.

• “xxxxxx%” (up to a 6
character user string) which
inserts the variable length
bundle number at the end
making it unique. For
example, a value of “BI%”
assigns a value of “BI1” to the

Page 139 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

first bundle.
• “#xxxxxx” (up to a 6

character user string) which
inserts the current four
character bundle number at
the beginning making it
unique. For example, a value
of “#BI” assigns a value of
“0001BI” to the first bundle,
while “#” would simply
assign a value of “0001”.

• “xxxxxx#” (up to a 6
character user string) which
inserts the current four
character bundle number at
the end making it unique. For
example, a value of “BI#”
assigns a value of “BI0001” to
the first bundle.

• “creditISN” which assigns the
rightmost 10 characters of the
credit item sequence number
to the bundle identifier. This
feature requires that
creditBeginsNewBundle is
true.

<fields> bundleCycleNumber 20.09,
52.04

This field is optional, but when
provided, it will be consistently
populated into the bundle header
record (20.09) and the image view
data record (52.04).

<fields> bundleReturnsRouting 20.10

<fields> bundleUserField 20.11

<fields> bundleReservedField 20.12

<fields> The fields from this point forward are
included in the XML parameters file and
are used exclusively by the X9Writer
interface provided via the SDK. They can
then be utilized by X9Utilities when the
HeaderXml file is used for your writer

Page 140 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

parameters.

<fields> bundleSequenceNumberAlpha 20.08 Populates the bundle sequence
number on an alphanumeric basis
when set to true. For example, the
first bundle will be assigned a value
of “1” when this parameter is
enabled. The default is false where
the first bundle will instead be
assigned a value of “0001”.

<fields> trailerInstitutionName 90.06

<fields> trailerSettlementDate 90.07 Default is business date when not
provided; a value of “none” will
cause the settlement date to be set to
spaces.

<fields> trailerContactName 99.06

<fields> trailerContactPhone 99.07 Numeric

<fields> trailerCreditTotalIndicator 70.07,
90.08,
99.08

When using the x9.100-187-2013
standard, specifies the credit total
indicator value that should be set in
trailer records. This field has values
of “1” (accumulated credits into
trailers) or “0” (do not accumulate
credits into trailers).

<fields> trailerPopulateMicrValidAmount 70.04 Default is “true”. Indicates if the
accumulated MICR valid amount
should be populated into the bundle
trailer record.

<fields> trailerPopulateImageCount 70.05 Default is “true”. Indicates if the
accumulated image count should be
populated into the bundle trailer
record.

<fields> creditFormat

• “metavante” – an industry standard
type 61 credit with 13 fields that is
defined in x9rules as format 61-
001.

• “dstu” – an industry standard type

Identifies the credit record type and
format to be used to create the credit
per the selected x9 configuration
rules. This field can be populated in
one of several manners. First, on a
logical basis using a record level
description that is set within x9

Page 141 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

61 credit with 12 fields that is
defined in x9rules as format 61-
002.

• “x9.100-180” – an industry
standard type 61 credit which is 84
characters long that is defined in
x9rules as format 61-003.

• “wellsfargo” – an industry
standard type 61 credit with 11
fields that is defined in x9rules as
format 61-004.

• “t25” – an alternative that uses a
type 25 check detail record to
represent the credit. The item must
be identified as a credit in some
manner, typically using an
appended transaction code in
MICR OnUs, but possibly also
using a dedicated credit routing.

• “t10” – an alternative that batches
each deposit within a dedicated
cash letter. Each deposit account
must be identified in some manner,
typically using either the cash
letter ECE origination routing, the
contact name, or the contact phone
number. When using this format,
the credit record location must be
set to “none”.

rules (eg, “metavante”) or on an
absolute basis using the record
format (eg, “61-001”).
Various options (from those that
follow) must be used to further
configure the constructed credit.
“creditInsertedAutomatically” must
be enabled to activate this feature.
“creditLocation” must be assigned
to define where the generated credit
will be inserted into the file.
The default is that all credits will
begin in a newly created bundle.
Images can be either dynamically
drawn or provided from external
image files.
Primary and secondary
endorsements can be created and
attached to the credit.
The impact that this credit will have
against the trailer records can be
defined. This directs how the credit
will impact count and amount totals
that are present in the bundle, cash
letter and trailer records.

<fields> creditRecordLocation
Supported values are:

• none => credit is not to be inserted
• a01 => after the file header
• a10 => after the cash letter header
• a20 => after the bundle header
• b70 => before the last bundle

trailer for all items within the
current deposit (transaction)

• a90 => after the cash letter trailer

Identifies the location where the
credit should be inserted into the
created x9 file.
A value of “none” indicates that the
credit is not to be inserted, which is a
convenient way to allow a defined
credit to be turned on or off during
initial testing.
The most commonly used setting is
“a20” which will insert the credit
after the first bundle header record.
A value of “none” must be used when

Page 142 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

a credit format of “t10” has been
assigned, since there is no actual
credit to be inserted.

<fields> creditInsertedAutomatically

This facility is used to insert one or more
deposit tickets into the created file when
required by the receiving bank.

Content of the deposit ticket must be
defined using the other credit xml fields
below (creditPayorBankRouting,
creditMicrOnUs, creditMicrAuxOnUs,
creditItemSequenceNumber, etc).

The deposit ticket can optionally contain
attached proxy images which are created
using external tiff images which are
identified by creditImageProxyFront and
creditImageProxyBack.

Default is “false”. Indicates that a
credit should be automatically
generated using an amount which is
calculated as the sum of all debits
(checks) which are present in the
current file.

<fields> creditStructure
Provides further direction regarding the
creation of individual credits. This
parameter is applicable only when
creditInsertedAutomatically has been
enabled.
Credit structure allows the checks with the
deposit to be grouped in specific ways,
subject to customer or financial institution
requirements.
When using “bundledCredits”, it is
important to format your csv file such that
an item record (t25, t31, 25, 31, etc)
appears before other csv lines for this
same item. For example, the paidStamp
must be after a t25 line (and the
paidStamp must be before the image line).
This is important because the csv lines
will be grouped and reordered when
constructing the deposits, so the item
record itself must always be first.

“multiItem” creates a credit which is
offset by multiple checks. This is the
default value and represents standard
processing.
“singleItem” creates single item
deposits (every check is created
within its own deposit).
“bundledCredits” creates bundles that
will each contain their own credit.
This option is applicable only when
the financial institution requires that
each bundle contains a credit (deposit
ticket). Several other parameters work
in conjunction with this option. You
must enable creditBeginsNewBundle
and then set bundleItemCount to the
maximum number of checks that
should be attached to each credit.

Page 143 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

<fields> creditAccountName Credit
52.19

Account name inserted into the credit
image when
<creditImageDrawFront> is true, and
will override info account name (in
the header) when present.

<fields> creditPayorBankRouting 6x.xx,
25.04

The payor bank routing that is used
when a credit is inserted
automatically or when the [“credit”,
amount] format is present on the
items csv file.

<fields> creditMicrOnUs 6x.xx,
25.06

The MICR OnUs that is used when a
credit is inserted automatically or
when the [“credit”, amount] format is
present on the items csv file.

<fields> creditMicrAuxOnUs 6x.xx,
25.02

The MICR AuxOnUs that is used
when a credit is inserted
automatically or when the [“credit”,
amount] format is present on the
items csv file. A value can be
explicitly provided. More commonly,
one of our patterns is used to generate
the value. The available patterns are
as follows:
“auto” will assign a 10 digit number
as yymmddhhmm.
"jjjhhmmnnn" will assign a 10 digit
number as jjjhhmmnnn where jjj is
the Julian day within the current year
and nnn is a sequential number that is
incremented for each new credit.
“hhmmssnnnn” will assign a 10 digit
number where nnnn is a sequential
number that is incremented for each
new credit.
“debitSequenceNumber” will assign
up to a 10 digit number that is taken
from the first item in the attached
deposit. This will be the right-most 10
digits of that sequence number
(which can be up to 15 digits). Using
this value can facilitate correlation of

Page 144 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

the credit back to the attached items.

<fields> creditItemSequenceNumber 6x.xx,
25.08

The item sequence number that is
used when a credit is inserted
automatically or when the generic
“credit” format is used. A value can
be explicitly provided. More
commonly, one of our patterns is used
to generate the value. The available
patterns are as follows:
“auto” will assign a 15 digit number
as yymmddhhmmssnnn where nnn is
a sequential number that is
incremented for each new credit.
"yyjjjhhmmssnnn" will assign a 15
digit number as yyjjjdhhmmssnnnn
where jjj is the Julian day within the
current year and nnnn is a sequential
number that is incremented for each
new credit.
“yyyymmddhhmmss” will assign a 14
digit number as yyyymmddhhmmss.

<fields> creditRecordUsageIndicator 6x.xx

<fields> creditDocumentationTypeIndicator 6x.xx,
25.09

<fields> creditTypeOfAccount 6x.xx

<fields> creditSourceOfWork 6x.xx

<fields> creditWorkType 6x.xx

<fields> creditDebitCreditIndicator 6x.xx

<fields> creditReturnAcceptanceIndicator 25.10 Used when credits are populated as
t25.

<fields> creditMicrValidIndicator 25.11 Used when credits are populated as
t25.

<fields> creditBofdIndicator 25.12 Used when credits are populated as
t25.

<fields> creditAddendumCount 25.13 Used when credits are populated as
t25.

<fields> creditCorrectionIndicator 25.14 Used when credits are populated as

Page 145 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

t25.

<fields> creditArchiveTypeIndicator 25.15 Used when credits are populated as
t25.

<fields> creditBeginsNewBundle Default is “true”. Indicates that each
credit should automatically begin a
new bundle.

<fields> creditImageDrawFront Front
Image

Default is “false”. Indicates that the
front image should be automatically
drawn as a deposit slip from the
credit information.

<fields> creditImageDrawBack Back
Image

Default is “false”. Indicates that the
back image should be inserted as a
“blank” image.

<fields> creditImageDrawMicrLine Front
Image

Default is “false”. Indicates that the
micr line should be included in the
drawn front image.

<fields> creditImageTitle Front
Image

Default is “Remote Deposit”.
Provides the document title that is
included in the drawn front image.

<fields> creditImageDrawCheckListCount Back
Image

Default is 15. Provides the number of
lines to be included within a
simulated list of deposited items.
Setting this value to zero will
eliminate the list completely. This list
is provided only as back side image
content, to ensure that this image will
not fail an IQA too light test (which
may happen if the image is totally
blank).

<fields> creditImageProxyFront Front
Image

<fields> creditImageProxyBack Back
Image

<fields> creditCreateBofd Default is “false”. Indicates that a
BOFD type 26 addendum should be
created and attached to the credit.

<fields> creditCreateSecondaryEndorsement Default is “false”. Indicates that a
secondary type 28 addendum should

Page 146 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

be created and attached to the credit.

<fields> creditAddToItemCount 70.02,
90.03,
99.03

Default to “false” since these counts
typically only include the debits.

<fields> creditAddToItemAmount 70.03,
90.04,
99.04

Default to “false” since these counts
typically only include the debits.

<fields> creditAddToImageCount 70.05,
90.05

Default to “true” since these counts
typically include all type 52 records
(debits and 61/62 credits).

<fields> itemDocumentationTypeIndicator 25.09 This value will be assigned to all
items that are defined using “t25”
item rows, since those rows include
only basic item information and do
not include the various type 25
indicator values.

<fields> itemReturnAcceptanceIndicator 25.10 Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemMicrValidIndicator 25.11 Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemBofdIndicator 25.12 Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemAddendumCount 25.13,
31.07

Defaults to zero and without override
is populated based on the actual
addendum count for this item.
Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemCorrectionIndicator 25.14 Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemArchiveIndicator 25.15 Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemImageCreatorRouting 50.3 Defines the routing number of the

Page 147 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

financial institution which has
captured the image. This value is
normally omitted and allowed to
default to the
cashLetterEceInstitutionRouting.
Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> bofdAddendumRouting 26.03 Nine digit routing to be assigned
when a type 26 addenda is to be
created. As an alternative to a routing
number, a value string of “blank” can
be assigned which will trigger the
creation of this addenda with the
routing field blank (this would be an
unusual requirement).

<fields> bofdDepositAccountNumber 26.06 Deposit account number, which
normally is assigned to debits from
the offsetting credit. This field can be
used to assign the deposit account
number for those files that do not
contain credits.

<fields> bofdDepositBranch 26.07 Deposit branch.

<fields> bofdPopulateDepositAccountNumber 26.06 Boolean which defaults to “false”.
This can be set to “true” to populate
the deposit account number from
either the offsetting credit (when one
is present) or from the above field
bofdDepositAccountNumber (when
the file does not contain credits).

<fields> bofdAddendumTruncationIndicator 26.09

<fields> bofdAddendumConversionIndicator 26.10

<fields> bofdAddendumCorrectionIndicator 26.11

<fields> bofdAddendumUserField 26.12 This field can contain a constant user
value or a specially formatted
credit/debit marker string. The
credit/debit marker is used by some
x9 variants to identify credits versus
debits, since there are often times no

Page 148 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

other way to accomplish this.
For example, an xmlValue of:
“CreditDebit=C:D" assigns "C" for
credit and "D" for debit;
"CreditDebit=:D" assigns "" for credit
and "D" for debit;
"CreditDebit=C:" assigns "C" for
credit and "" for debit;
"CreditDebit=CR:DR" assigns "CR"
for credit and "DR" for debit;
and so forth.

<fields> secdAddendumRouting 28.03 Nine digit routing to be assigned
when a type 28 addenda is to be
created. As an alternative to a routing
number, a value string of “blank” can
be assigned which will trigger the
creation of this addenda with the
routing field blank (this would be an
unusual requirement).

<fields> secdAddendumPopulateDate 28.04 Boolean which defaults to “false”.
This can be set to “true” to populate
the item date.

<fields> secdAddendumPopulateSequenceNumber 28.05 Boolean which defaults to “false”.
This can be set to “true” to populate
the item sequence number.

<fields> secdAddendumTruncationIndicator 28.06

<fields> secdAddendumConversionIndicator 28.07

<fields> secdAddendumCorrectionIndicator 28.08

<fields> secdAddendumUserField 28.10

<fields> secdAddendumBankIdentifier 28.11

<fields> A second type 28 addendum can be
created using the same fields as above
using the prefix “secd2” instead of “secd”.

28.xx Second type 28 endorsement record.
The populate date and populate
sequence number fields are not
duplicated; those fields apply to all
secondary addenda records.

<fields> A third type 28 addendum can be created
using the same fields as above using the
prefix “secd3” instead of “secd”.

28.xx Third type 28 endorsement record.
The populate date and populate
sequence number fields are not

Page 149 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

duplicated; those fields apply to all
secondary addenda records.

<fields> imageDetailImageIndicator 50.02 Default is “1”.

<fields> imageDetailFormatIndicator 50.05 Default is “00”.

<fields> imageDetailCompressionAlgorithm 50.06 Default is “00”.

<fields> imageDetailDataSize 50.7 Default is “blank”; can be set to
“zero” which results in the value of
zero being assigned; can be set to
“actual” with results in the actual
image size being assigned when
available.

<fields> imageDetailViewDescriptor 50.09 Default is “0”.

<fields> imageDetailDigitalSignatureIndicator 50.10 Default is “0”.

<fields> imageDetailDigitalSignatureMethod 50.11

<fields> imageDetailSecurityKeySize 50.12

<fields> imageDetailStartOfProtectedData 50.13

<fields> imageDetailLengthOfProtectedData 50.14

<fields> imageDetailImageRecreateIndicator 50.15 Default is “0”.

<fields> imageDetailUserField 50.16

<fields> imageDetailReserved1 50.17 Applies to x9.100-187 (2008 and
2013).

<fields> imageDetailOverrideIndicator 50.18 Applies to x9.100-187 (2008 and
2013).

<fields> imageDetailUserField 50.16

<fields> imageDataEceInstitutionRouting 52.2 Will default to 10.4 ECE Institution
Routing Number when omitted.

<fields> imageDataSecurityOriginatorName 52.06

<fields> imageDataSecurityAuthenticatorName 52.07

<fields> imageDataSecurityKeyName 52.08

<fields> imageDataClippingOrigin 52.09 Default is “0”.

<fields> imageDataClippingCoordinateH1 52.10

<fields> imageDataClippingCoordinateH2 52.11

<fields> imageDataClippingCoordinateV1 52.12

Page 150 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

<fields> imageDataClippingCoordinateV2 52.13

<fields> imageDataPopulateReferenceKey 52.15 Boolean which defaults to “false”.
Used by SDK applications that
invoke X9Writer directly to indicate
when the reference key should be
populated with an item level value.

<fields> imageDataPopulateDigitalSignature 52.17 Boolean which defaults to “false”.
Used by SDK applications that
invoke X9Writer directly to indicate
when the digital signature should be
populated with an item level value.

<fields> ebcdicEnCoding Boolean which defaults to “true”.
Indicates that the output x9 file
should be created in the EBCDIC
character set. Indicates (when false)
that the x9 file should be created in
ASCII.

<fields> fieldZeroInserted Boolean which defaults to “true”.
Indicates that field zero (the four byte
binary record length) should be
inserted at the beginning of each x9
record.

<fields> variableFieldDescriptorsPopulateAsNume
ric

52.14,
52.16,
52.18,
etc.

Boolean which defaults to “false”.
Indicates that variable length field
descriptors should always be
populated on a numeric basis even
when they are defined as numeric
blank by the current standard. Either
format will pass validation but
forcing the value to complete numeric
may allow a generated x9 file to be be
more acceptable to receiving
processors.

<fields> micrTransitSymbol Default is “A” and is not case
sensitive; used to parse the MICR
line.

<fields> micrAmountSymbol Default is “B” and is not case
sensitive; used to parse the MICR
line.

Page 151 of 166

X9Ware SDK User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

<fields> micrOnUsSymbol Default is “C” and is not case
sensitive; used to parse the MICR
line.

<fields> micrDashSymbol Default is “D” and is not case
sensitive; used to parse the MICR
line.

Page 152 of 166

X9Ware SDK User Guide X9Ware LLC

Appendix: X9 Record TypesAppendix: X9 Record Types

Type 25 Check Detail Record

The Check Detail Record represents a single check (item) and may appear only within an active
bundle. It is typically present in a forward presentment ,cash letter which is identified with a Collection
Type Indicator of ‘00’, ‘01’ or ‘02’. Each type 25 record represents a single item. The data in Fields 2
through 7 represent the check MICR line which was captured from the item.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “25”.

2 Aux OnUs C 3 15 NBSM

3 External
Processing Code
(EPC)

C 18 1 ANS

4 Payor Bank
Routing

M 19 8 N First eight digits of the routing as
captured from the MICR line.

5 Payor Bank
Routing Check
Digit

C 27 1 NBSM Ninth digit of the routing as captured
from the MICR line.

6 On Us C 28 20 NBSM

7 Amount M 48 10 N Item amount.

8 Item Sequence
Number

M 58 15 NB Your internal sequence number
assigned to this item as a unique
identification.

9 Documentation
Type Indicator

C 73 1 AN Suggested value “G” which is image
included with no paper provided.

10 Return Acceptance
Indicator

C 74 1 AN Suggested value “1” which is indicates
acceptance of preliminary return
notifications, returns, and final return
notifications.

11 MICR Valid
Indicator

C 75 1 N Suggested value “1” which indicates
good MICR read.

12 BOFD Indicator M 76 1 A Suggested value “Y” which indicates
that the ECE institution is BOFD.

13 Addendum Count M 77 2 N Must be set to 00 when there are not
addendums for this check detail

Page 153 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

record.

14 Correction
Indicator

C 79 1 N Suggested value spaces since the field
is conditional.

0’ No Repair
‘1’ Repaired
‘2’ Repaired without Intervention
‘3’ Repaired with Operator
Intervention
‘4’ Undetermined ‘4’ Undetermined

15 Archive Type
Indicator

C 80 1 AN Suggested value spaces since the field
is conditional.

Type 26 Check Detail Addendum A Record

The Check Detail Addendum A Record represents the Bank of First Deposit (BOFD) endorsement for
this item. Presence of this record type is conditional and is used to document a specific processing
entity within the endorsement chain. There is typically only a single type 26 record for a given item,
but that requirement is not absolute subject to clearing arrangements. The type 26 endorsement record
must always follow its immediately preceding Check Detail Record (Type 25) or another Check Detail
Addendum A Record (Type 28). It is one of three addendum type records which are available for use
within the Check Detail Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “26”.

2 Check Detail
Addendum A
Record Number

M 3 1 N Assigned sequentially beginning with
1.

3 Bank of First
Deposit (BOFD)
Routing
Number

C 4 9 N

4 Business
(Endorsement)
Date

C 13 8 N

5 Item Sequence
Number

C 21 15 NB

Page 154 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

6 Deposit Account
Number at BOFD

C 36 18 ANS

7 Deposit Branch C 54 5 ANS

8 Payee Name C 59 15 ANS

9 Truncation
Indicator

C 74 1 A Y’ Yes this institution truncated the
original check
‘N’ No this institution did not truncate
the original check

10 Conversion
Indicator

C 75 1 AN ‘0’ Did not convert physical document
‘1’ Original paper converted to IRD
‘2’ Original paper converted to image
‘3’ IRD converted to another IRD
‘4’ IRD converted to image of IRD
‘5’ Image converted to an IRD
‘6’ Image converted to another image
‘7’ Did not convert image
‘8’ Undetermined

11 Correction
Indicator

C 76 1 N 0’ No Repair
‘1’ Repaired
‘2’ Repaired without Intervention
‘3’ Repaired with Operator
Intervention
‘4’ Undetermined

12 User Field C 77 1 ANS

13 Reserved M 78 3 B

Type 27 Check Detail Addendum B Record

The Check Detail Addendum B Record is conditional and is typically used to define the location of an
image within an image archive. It should only be present only under defined clearing arrangements.
The image archive locator record should always its immediately preceding Check Detail Record (Type
25) or a Check Detail Addendum A Record (Type 26) when present. Only one Check Detail Addendum
B Record is permitted for a Check Detail Record (Type 25). It is one of three addendum type records
which are available for use within the Check Detail Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “33”.

Page 155 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

2 Variable Size
Record Indicator

M 3 1 N 0’ this is an 80-byte record; Field 2 has
a value of 34.
‘1’ Field 5 is variable size.

3 Microfilm Archive
Sequence Number

C 4 15 NB

4 Length of Image
Archive Locator

M 19 4 N Value must be 1 through 999.

5 Image Archive
Locator

C 23 34 ANS

6 Description C 57 15 ANS

7 User Field C 72 4 ANS

8 Reserved M 76 5 B

Type 28 Check Detail Addendum C Record

The Check Detail Addendum C Record represents a subsequent endorsement for this item. Presence of
this record type is conditional and is used to document a specific processing entity within the
endorsement chain. There may be multiple type 28 records for a given item and they are sequentially
numbered beginning at one. The type 28 endorsement record must immediately follow its Check Detail
Record (Type 25), Check Detail Addendum A Record (Type 26), or a Check Detail Addendum B
Record (Type 27) when present. It is one of three addendum type records which are available for use
within the Check Detail Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “28”.

2 Check Detail
Addendum C
Record Number

M 3 2 N Assigned sequentially beginning with
1.

3 Bank Routing C 5 9 N

4 Endorsement Date C 14 8 N

5 Item Sequence
Number

C 22 15 NB

6 Truncation
Indicator

C 37 1 A Y’ Yes this institution truncated the
original check
‘N’ No this institution did not truncate
the original check

Page 156 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

7 Conversion
Indicator

C 38 1 AN ‘0’ Did not convert physical document
‘1’ Original paper converted to IRD
‘2’ Original paper converted to image
‘3’ IRD converted to another IRD
‘4’ IRD converted to image of IRD
‘5’ Image converted to an IRD
‘6’ Image converted to another image
‘7’ Did not convert image
‘8’ Undetermined

8 Correction
Indicator

C 39 1 N 0’ No Repair
‘1’ Repaired
‘2’ Repaired without Intervention
‘3’ Repaired with Operator Intervention
‘4’ Undetermined

9 Return Reason C 40 1 AN

10 User Field C 41 15 ANS

11 Reserved M 56 15 B

Type 31 Return Record

The Return Record represents a single check (item) and may appear only within an active bundle. It is
typically present in a return cash letter which is identified by a Collection Type Indicator (10.2) set to a
value of '03' (Return), ‘04’ (Return Notification), ‘05’ (Preliminary Return Notification), or ‘06’ (Final
Return Notification). Each type 31 record represents a single item that often times is being returned as a
result of a type 26 forward presentment item. Note that the Auxiliary On-Us field is not present in this
record type, due to a lack of space, and is present in the optional type 32 record which follows.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “31”.

2 Payor Bank
Routing

M 3 8 N First eight digits of the routing as
captured from the MICR line.

3 Payor Bank
Routing Check
Digit

C 11 1 NBSM Ninth digit of the routing as captured
from the MICR line.

4 On Us C 12 20 NBSM

5 Item Amount M 32 10 N

Page 157 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

6 Return Reason M 42 1 AN ‘A’ NSF - Not Sufficient Funds
‘B’ UCF - Uncollected Funds Hold
‘C’ Stop Payment
‘D’ Closed Account
‘E’ UTLA - Unable to Locate Account
‘F’ Frozen/Blocked Account
‘G’ Stale Dated
‘H’ Post Dated
'I’ Endorsement Missing
‘J’ Endorsement Irregular
‘K’ Signature(s) Missing
‘L’ Signature(s) Irregular
‘M’ Non-Cash Item (Non-Negotiable)
‘N’ Altered/Fictitious Item
‘O’ Unable to Process (e.g. Mutilated
Item)
‘P’ Item Exceed Dollar Limit
‘Q’ Not Authorized
‘R’ Branch/Account Sold (Wrong
Bank)
‘S’ Refer to Maker
‘T’ Stop Payment Suspect
‘U’ Unusable Image (Image could not
be used for required business purpose)
‘V’ Image fails security check
‘W’ Cannot Determine Amount

7 Return Record
Addendum Count

M 43 2 N

8 Return
Documentation
Type Indicator

C 45 1 AN ‘A’ No image provided, paper provided
separately
‘B’ No image provided, paper provided
separately, image upon request
‘C’ Image provided separately, no paper
provided
‘D’ Image provided separately, no
paper provided, image upon request
‘E’ Image and paper provided
separately
‘F’ image and paper provided
separately, image upon request
‘G’ Image included, no paper provided
‘H’ Image included, no paper provided,

Page 158 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

image upon request
‘I’ Image included, paper provided
separately
‘J’ Image included, paper provided
separately, image upon request
‘K’ No image provided, no paper
provided
‘L’ No image provided, no paper
provided, image upon request
‘M’ No image provided, Electronic
Check provided separately

9 Forward Bundle
Date

C 46 8 N

10 Item Sequence
Number

C 54 15 NB

11 External
Processing Code

C 69 1 ANS

12 Return
Notification
Indicator

C 70 1 N ‘1’ Preliminary notification
‘2’ Final notification

13 Return Archive
Type Indicator

C 71 1 AN ‘A’ Microfilm
‘B’ Image
‘C’ Paper
‘D’ Microfilm and image
‘E’ Microfilm and paper
‘F’ Image and paper
‘G’ Microfilm, image and paper
‘H’ Electronic Check Instrument
‘I’ None

14 Reserved M 72 9 B

Type 32 Return Addendum A Record

The Return Addendum A Record represents the Bank of First Deposit (BOFD) endorsement for this
item. Its presence is conditional. There is typically only a single type 31 record for a given item, but
that requirement is not absolute subject to clearing arrangements. The type 32 endorsement record must
always follow its immediately preceding Return Record (Type 31) or another Return Addendum A

Page 159 of 166

X9Ware SDK User Guide X9Ware LLC

Record (Type 32). It is one of four addendum type records which are available for use with the Return
Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “32”.

2 Return Addendum
A Record Number

M 3 1 N Assigned sequentially beginning with
1.

3 Bank of First
Deposit (BOFD)
Routing
Number

C 4 9 N

4 Business
(Endorsement)
Date

C 13 8 N

5 Item Sequence
Number

C 21 15 NB

6 Deposit Account
Number at BOFD

C 36 18 ANS

7 Deposit Branch C 54 5 ANS

8 Payee Name C 59 15 ANS

9 Truncation
Indicator

C 74 1 A Y’ Yes this institution truncated the
original check
‘N’ No this institution did not truncate
the original check

10 Conversion
Indicator

C 75 1 AN ‘0’ Did not convert physical document
‘1’ Original paper converted to IRD
‘2’ Original paper converted to image
‘3’ IRD converted to another IRD
‘4’ IRD converted to image of IRD
‘5’ Image converted to an IRD
‘6’ Image converted to another image
‘7’ Did not convert image
‘8’ Undetermined

11 Correction
Indicator

C 76 1 N 0’ No Repair
‘1’ Repaired
‘2’ Repaired without Intervention
‘3’ Repaired with Operator Intervention
‘4’ Undetermined

12 User Field C 77 1 ANS

Page 160 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

13 Reserved M 78 3 B

Type 33 Return Addendum B Record

The Return Addendum B Record is conditional and should be present unless omitted under clearing
arrangements. Only one Return Addendum B Record is permitted for a Return Record (Type 31) and it
shall must follow its associated Return Record (Type 31) or Return Addendum A Record (Type 32)
when present. It is one of four addendum type records available for use with the Return Record item
group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “33”.

2 Payor Bank Name C 3 18 A

3 Auxiliary On-Us C 21 15 NBSM

4 Item Sequence
Number

C 36 15 NB

5 Business Date C 51 8 N

6 Account Name C 59 22 ANS

Type 34 Return Addendum C Record

The Return Addendum C Record is conditional and is typically used to define the location of an image
within an image archive. It should only be present only under defined clearing arrangements. The
image archive locator record should always its immediately preceding Return Record (Type 31), a
Return Addendum A Record (Type 32), or Return Addendum B Record (Type 33) when present. Only
one Return Addendum C Record is permitted for a Return Record (Type 31). It is one of four
addendum type records available for use with the Return Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “33”.

2 Variable Size
Record Indicator

M 3 1 N 0’ this is an 80-byte record; Field 2 has
a value of 34.
‘1’ Field 5 is variable size.

3 Microfilm Archive
Sequence Number

C 4 15 NB

Page 161 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

4 Length of Image
Archive Locator

M 19 4 N Value must be 1 through 999.

5 Image Archive
Locator

C 23 34 ANS

6 Description C 57 15 ANS

7 User Field C 72 4 ANS

8 Reserved M 76 5 B

Type 35 Return Addendum D Record

The Return Addendum D Record represents a subsequent endorsement for this item. Presence of this
record type is conditional and is used to document a specific processing entity within the endorsement
chain. There may be multiple type 35 records for a given item and they immediately follow its Return
Record (Type 31), Return Addendum A Record (Type 32), Return Addendum B Record (Type 33), or
Return Addendum C Record (Type 34) when present. It is one of four addendum type records available
for use with the Return Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “28”.

2 Return Addendum
D Record Number

M 3 2 N Assigned sequentially beginning with
1.

3 Bank Routing C 5 9 N

4 Endorsement Date C 14 8 N

5 Item Sequence
Number

C 22 15 NB

6 Truncation
Indicator

C 37 1 A Y’ Yes this institution truncated the
original check
‘N’ No this institution did not
truncate the original check

Page 162 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

7 Conversion
Indicator

C 38 1 AN ‘0’ Did not convert physical
document
‘1’ Original paper converted to IRD
‘2’ Original paper converted to image
‘3’ IRD converted to another IRD
‘4’ IRD converted to image of IRD
‘5’ Image converted to an IRD
‘6’ Image converted to another image
‘7’ Did not convert image
‘8’ Undetermined

8 Correction
Indicator

C 39 1 N 0’ No Repair
‘1’ Repaired
‘2’ Repaired without Intervention
‘3’ Repaired with Operator
Intervention

9 Return Reason C 40 1 AN A’ NSF - Not Sufficient Funds
‘B’ UCF - Uncollected Funds Hold
‘C’ Stop Payment
‘D’ Closed Account

10 User Field C 41 15 ANS

11 Reserved M 56 15

Type 61 Format (001) “Metavante”

The Credit Reconciliation record type 61 format 001 is commonly used and can often be identified
based on the presence of 13 fields.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “61”.

2 MICR AuxOnUs C 3 15 NBSM

3 External
Processing Code
(EPC)

C 18 1 N

4 Payor Bank
Routing

M 19 9 N

5 MICR OnUs M 28 20 NBSM

Page 163 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

6 Amount M 48 10 N

7 Item Sequence
Number

M 58 15 NB

8 Documentation
Type Indicator

C 73 1 AN

9 Type of Account C 74 1 A

10 Source of Work C 75 1 AN

11 Work Type C 76 1 ANS

12 Debit Credit
Indicator

C 77 1

13 Reserved C 78 3 ANS Blanks

Type 61 Format (002) “DSTU”

The Credit Reconciliation record type 61 format 002 is commonly used and can often be identified
based on the presence of 12 fields.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “61”.

2 Record Usage
Indicator

M 3 1 AN

3 MICR AuxOnUs C 4 15 NBSM

4 External
Processing Code
(EPC)

C 19 1 N

5 Payor Bank
Routing

M 20 9 N

6 MICR OnUs M 29 20 NBSM

7 Amount M 49 10 N

8 Item Sequence
Number

M 59 15 NB

9 Documentation
Type Indicator

C 74 1 AN

Page 164 of 166

X9Ware SDK User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

10 Type of Account C 75 1 A

11 Source of Work C 76 2 AN

12 Reserved C 78 3 ANS Blanks

Type 61 Format (003) “x9.100-180”

The Credit Reconciliation record type 61 format 003 is not commonly used since it has a record length
of 84 instead of the much more standard length of 80 that is shared by all x9 record formats.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “61”.

2 Record Usage
Indicator

M 3 1 AN

3 MICR AuxOnUs C 4 15 NBSM

4 External
Processing Code
(EPC)

C 19 1 N

5 Payor Bank
Routing

M 20 9 N

6 MICR OnUs M 29 20 NBSM

7 Amount M 49 14 N

8 Item Sequence
Number

M 63 15 NB

9 Documentation
Type Indicator

C 78 1 AN

10 Type of Account C 79 1 A

11 Source of Work C 80 2 AN

12 Reserved C 82 3 ANS Blanks

Page 165 of 166

X9Ware SDK User Guide X9Ware LLC

Type 62 Format (000) “x9.100-187-2013”

The Credit Reconciliation record type 62 format 000 was introduced as part of the x9.100-187-2013
standard and is included in x9.100-187-2016 and beyond. Note the length of this record is 100 and not
80, which makes it very different from the various type 61 credit layouts.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “62”.

2 MICR AuxOnUs C 3 15 NBSM

3 External
Processing Code
(EPC)

C 18 1 NS

4 Payor Bank
Routing

M 19 9 N

5 MICR OnUs M 28 20 NBSMOS

6 Amount M 48 14 N

7 Item Sequence
Number

M 62 15 NB

8 Documentation
Type Indicator

C 77 1 AN

9 Type of Account C 78 1 AN

10 Source of Work C 79 2 N

11 User Field C 81 16 ANS

12 Reserved M 97 4 ANS Blanks

Page 166 of 166

	Overview
	Upgrading from a Previous X9Ware-SDK Release
	X9Ware-SDK Upgrade Considerations
	X9Ware-SDK Resources
	Code Upgrade Patterns
	Try-With-Resources

	Installation Tasks
	JAR Requirements and ClassPath
	SLF4J Logging
	Logging Frameworks
	X9SdkLogger

	Linux Considerations
	AWS Cloud Considerations
	Submitting Problem Reports
	Runtime Resources
	Runtime Folders

	System Folders
	Logging During Startup
	Explicitly Setting the System Folders
	Explicit Assignment of the Launch Folder
	Explicit Assignment of the Work Folder
	Explicit Assignment of the Home Folder

	X9Ware-SDK Fundamentals
	X9Ware-SDK Initialization
	License Keys
	Sample Startup Code
	Bind Configurations
	X9.37 Configurations
	ACH Configurations

	X9Ware-SDK Shutdown
	X9Ware-SDK Includes X9Utilities
	Using X9Objects
	Retrieving Fields within X9 Records
	Modifying Fields within X9 Records
	Credits And Trailer Totals
	Using X9Writer
	X9Ware-SDK Code Examples
	Rules Overview
	X9 Configurations
	X9 Rules
	X9 Rules – Base Specification Example
	X9 Rules – Extension Specification Example
	X9 Rules – X9Controls
	X9 Rules – Basis
	X9 Rules – X9Record
	X9 Rules – Field
	X9 Rules – Local Edits
	X9 Rules – Cross Field Edits
	X9 Rules – Date Range Validations
	X9 Rules – Tables
	X9 Rules – Tests
	X9 Rules – POD Credit Tables

	TIFF Rules
	TIFF Rules – TIFF Controls
	TIFF Rules – TIFF Edits
	TIFF Rules – Mandatory TIFF Tags
	TIFF Rules – TIFF Tag Descriptions

	Gray Scale Image Support
	X9 Messages
	Message XML
	System Messages
	Override Messages
	Full / Sparse / Plain
	Message Patterns
	Message Files in JAR versus File System
	Message Pattern Reuse
	Message Configurations
	Using the Message and Configuration Editors
	Using the X9Ware-SDK API to Insert Message Overrides
	Using the X9Ware-SDK API to Insert Message Overrides from XML

	Bitonal Image Thresholding
	Bitonal Image Challenges
	Bitonal Thresholding Techniques

	MICR Line Format and Standards
	MICR Line Standards
	MICR Line Parsing
	MICR Line Characters
	MICR Line Fields
	MICR Line Layout
	MICR Line RegEx

	Appendix: HeaderXml
	Editing HeaderXml
	HeaderXml as Written to the Log
	X9 File Structure
	Inclusion of Credits in Trailer Totals
	HeaderXml Fields defined within the <info> group
	HeaderXml Fields defined within the <fields> group

	Appendix: X9 Record Types
	Type 25 Check Detail Record
	Type 26 Check Detail Addendum A Record
	Type 27 Check Detail Addendum B Record
	Type 28 Check Detail Addendum C Record
	Type 31 Return Record
	Type 32 Return Addendum A Record
	Type 33 Return Addendum B Record
	Type 34 Return Addendum C Record
	Type 35 Return Addendum D Record
	Type 61 Format (001) “Metavante”
	Type 61 Format (002) “DSTU”
	Type 61 Format (003) “x9.100-180”
	Type 62 Format (000) “x9.100-187-2013”

