
X9Utilities User Guide X9Ware LLC

X9Utilities
User Guide

X9Ware

 Your x9.37+ACH+CPA005 support tools

Revision Date: 03/22/2024
Release R5.04

Copyright 2012 – 2024 X9Ware LLC
All enclosed information is proprietary to X9Ware LLC

X9Ware LLC
10753 Indian Head Industrial Blvd

St Louis, Missouri 63132-1101
(844) 937-1850

Email support@x9ware.com

Page 1 of 194

mailto:support@x9ware.com

X9Utilities User Guide X9Ware LLC

Table of Contents
X9Utilities Console..8
X9Utilities and Related Products...17
X9 Image Exchange Standards..18
Windows EXE Batch Scripts...19

x9writer.bat – example #1...19

x9writerProcessor.bat – example #2..20

Batch Image Conversions..21

Emails on failures..22

Java JRE and Command Line Scripts..23
Using a Fully Qualified “java.exe" Reference..23

System Log..24
Console Logging..25
System Log Correlation...26
Command Help..27
Exit Codes..28
Batch / Script Operations...29
Write and Translate..32
Export and Import..34
File ID Modifier XML File..36
Supported x9 Configurations...38
Supported x9 Record Types...39
X9.37 Data Types...40
Write...41

Command line options...42

Command line examples...42

X9 Configuration Reference...43

Automated Image Repair...43

MICR Line..44

HeaderXml Reference...44

Items..44

Credits...49

Excessive Field Sizes..52

Credit Types...52

Credit Images..53

Custom Type 61 Credit Formats..54

Item Images...54

Paid Stamp...56

Page 2 of 194

X9Utilities User Guide X9Ware LLC

Batch Profiles..58

New Bundle Statement..60

System Log Correlation...60

END Statement..60

Sample Items File..60

Sample Items File with a Credit..61

Sample Items File with User Defined 26/28 Records...61

Drawn Images and Remotely Created Checks (RCC)...63
What is a Remotely Created Check (RCC)?...63

FED Position as of January 2019 -- Due Diligence Required...63

RCC Items Should be Assigned EPC “6"..64

Our RCC Support Leverages “-write" Functionality..64

Using Image Templates...64

Drawing Images..65

Create...69
Image conversion..70

E13B-Threading..70

CSV conversion of i25 to t25..70

All Writer functionality can be leveraged...71

ImageFolder and Base64 image strings...71

End statement..72

Action CSV...72

FAILURES CSV...73

Command line options...73

Command line examples...74

Sample items file..75

Draw...76
Command line options...76

Draw csv line types...76

Command line examples...77

Translate...78
Command line options...79

Command line examples...79

Write/Translate Sample CSV files...81
Export...83

Export versus ExportCsv...83

Export Formats for X9.37 Output...84

Command line options...85

Page 3 of 194

X9Utilities User Guide X9Ware LLC

Command line examples...88

Export Considerations...90

Sample CSV output (which is the default format)..98

XML Flat Format Example (created using the -xmlf switch)...99

XML Hierarchical Format Example (created using the -xmlh switch)...100

ExportCsv...101
ExportCsv field names...101

Special field names..101

Image formats..101

Image methods..102

Command line options...102

Command line examples...102

ExportCsv XML Definition..103

Sample XML for Forward Presentment and Returns..105

Sample ExportCsv Output File..106

Import...107
Command line options...107

Command line examples...108

Excessive Field Sizes..108

Validate...109
Command line options...109

Command line examples...110

Exit status..110

Error File Columns..110

Error File example...111

Custom Rules...111

Qualify..113
Input Images from CSV or Folders...113

Output CSV format..113

Exit status..114

Command line options...114

Command line examples...115

Sample CSV output file...115

Make...117
Command line options...117

Command line examples...118

Exit status..118

Merge...119

Page 4 of 194

X9Utilities User Guide X9Ware LLC

Landing Zone Batch Script..120

Landing Zone Watcher Script..120

Command line options...121

Command line examples...123

Time Stamp file format...124

Exit status..124

Compare...126
Command Line Options..126

Command line examples...127

Exit status..127

Scrub..128
Command line options...128

Command line examples...129

Scrub results CSV File..129

ImagePull...131
Input CSV..131

Results CSV..132

Extracted Image File Names...133

Error CSV..133

XML parameter file...133

Command line options...134

Command line examples...134

Update..136
Command line options...136

Command line examples...136

Update Results CSV File...137

Constants...137

Look Back to Previous Values...138

External Table Lookups...138

Update XML File Examples..138

RegEx Online Tools..139

AI Assistance...140

RegEx Examples...140

Split..141
Command line options...141

Command line examples...142

Default Output Segment..143

Skipped Items..143

Page 5 of 194

X9Utilities User Guide X9Ware LLC

Auto-Reconcilement..143

Output Segment Totals..143

Output Segment File Names..143

Split Results CSV File...143

Split XML Tag Names...144

Split XML file examples...144

RegEx examples..146

Embedded Use of the X9Ware SDK..147
Bitonal Image Thresholding...148

Bitonal Image Challenges...148

Bitonal Thresholding Techniques..148

MICR Line Format and Standards...152
MICR Line Standards..152

MICR Line Parsing...153

MICR Line Characters..153

MICR Line Fields..153

MICR Line Layout..154

MICR Line RegEx...155

Appendix: HeaderXml...158
Editing HeaderXml..158

HeaderXml as Written to the Log..159

X9 File Structure...160

Inclusion of Credits in Trailer Totals...160

HeaderXml Fields defined within the <info> group...160

HeaderXml Fields defined within the <fields> group...161

Appendix: X9 Record Types..179
Type 25 Check Detail Record..179

Type 26 Check Detail Addendum A Record..180

Type 27 Check Detail Addendum B Record...181

Type 28 Check Detail Addendum C Record...182

Type 31 Return Record..183

Type 32 Return Addendum A Record..185

Type 33 Return Addendum B Record...187

Type 34 Return Addendum C Record...187

Type 35 Return Addendum D Record...188

Type 61 Format (001) “Metavante”..189

Type 61 Format (002) “DSTU”...190

Type 61 Format (003) “x9.100-180”...191

Page 6 of 194

X9Utilities User Guide X9Ware LLC

Type 62 Format (000) “x9.100-187-2013”..191

HeaderXml937 Editor..193

Page 7 of 194

X9Utilities User Guide X9Ware LLC

X9Utilities Console

X9Vision ? X9Validator ? X9Assist? X9.37 ? ACH ? CPA005 ?

NO NO YES YES NO NO

The X9Utilities Console is an interactive tool that is available within both X9Utilities and X9Assist.
The console is a powerful facility that allows command line parameters to be entered, validated, and
then submitted for execution. It serves as a good demonstration of the overall capabilities of
X9Utilities, since it allows the command line to be constructed visually, with validation of files and
command line switches as they are entered. The console allow X9Utilities to be run on demand. It
intercepts and displays the system log as x9utilities is executing. It then displays the final exit status
that is posted by the x9uti.exe.

The console is an integral part of X9Utilities itself, and launched using the “-console” switch on the
command line. By using this approach, it is not a separate program but instead embedded within the
standard x9utilities runtime.

The console allows allows a set of parameters can be save to xml as a “run unit” that can be
subsequently loaded an executed again. This is a provided as a productivity tool, since it allows a given
set of parameters to be saved and executed again in the future, as needed.

As previously mentioned, X9Utilities is a command line tool. In your production environment, it will
be invoked on a batch (command line) basis. This might be from a scheduled batch script, or more
possibly directly by an application program. The console can serve as a workbench for your testing. It
provides an illustration of x9utilities capabilities and operation.

The console is made available as part of X9Assist since that product is a desktop tool, is designed with
a UI (User Interface) for human interaction, and is our full-function desktop product. X9Assist
customers can use the console to actually run X9Utilities interactively in their environment. An
X9Utilities license must be purchased if you subsequently decide that you would like to run the tool on
batch basis.

This documentation describes how to use the X9Utilities Console. However, it does not provide
detailed information on each of the functions that are available via that batch (command line) utility.
Please reference the X9Utilities User Guide (which is available in its entirety via help) for complete
information regarding functions, capabilities, and command line options.

X9Utilities Evaluations

The console can be used during X9Utilities evaluations, to both simplify and expedite the review
process. Product evaluations are normally performed within a limited time frame and hence

Page 8 of 194

X9Utilities User Guide X9Ware LLC

productivity factors are important. The console helps greatly during this process, since you can run any
X9Utilites function from start to end within minutes, without the need to develop a batch script. You
can also repeat the same test using a variety of input files, and can save the work unit for further
repeated testing at a later time. All of these capabilities can add a lot of value during an evaluation of
our X9Utilities product, so it represents a great way to get started. Once you have determined that your
evaluation is favorable, X9Ware can then provide an evaluation copy of X9Utilities, which will allow
you to perform the same operations on a command line basis.

X9Utilities Batch File (Windows)

The console can be invoked using a batch file. A sample of this is included as part of the Windows
installation, in folder: / samples / console / .

@echo off

: Run the x9utilities using a start command, which allows it to run separately and the
consolse window itself to close.

cd "c:/Program Files/X9Ware LLC/X9Utilities R4.11"
start "" x9util -console

: pause

exit /b

Console Fields

The X9Utilities Console contains the following fields which allow you to identify the function to be
performed along with their associated parameters:

• “Function” is a drop down box which allows the X9Utilities task to be selected.
• “Batch” is a check box that is used to indicate that batch processing is activate. This is a more

complex runtime mode, where a command is executed against all of the files within a folder
(instead of against a single file). When using batch mode, the input file must be defined as as
wild-card string, where an asterisk is used for pattern matching during the file selection process.
Refer to the topic “Batch/Script Operations” in the X9Utilities User Guide for more
information.

• “Threads” applies only when running in batch mode, and identifies the number of threads that
will be used during work unit processing.

• “Wild Card Pattern” applies only when running in batch mode, and defines the pattern that will
be applied when selecting files within folders. An example might be *.x9.

• “Command Switches” is a list of switch values which are to be applied to the selected task. The
entered switches must begin with a dash and must be valid for the selected function to be
performed. Refer to the X9Utilities User Guide for more information.

Page 9 of 194

X9Utilities User Guide X9Ware LLC

• “Rules Specification” is used to select the x9.37 specification to be associated with the selected
task. For example, the specification is critical for the “-write” since it identifies the x9 rules to
be utilized, which identifies key information such as fields and field alignments.

• “Command line as executed” is a display box which summarizes the command line that will be
executed for the selected task. The command line will be updated interactively as changes are
made to the above fields (function, switches, rules, etc).

Input and Output Files

The X9Utilities Console includes a facility which must be used to define the input and output files that
are processed. There are various files that can be specified, with certain files required based on the
function being performed. These files are selected via a file chooser and the fully qualified file name is
then displayed in the text box immediately to the right of each selection box. The chosen input and
output files will be passed to X9Utilities via the command line. It is also informative to take a look at
the command line box to see how input and output files are provided to X9Utilties via the constructed
command line.

The following input and output files can be specified:

Function Input File Image Folder
Secondary
Input File Output File Results File

Translate Mandatory Optional; will
default to

“_IMAGES”
when not
specified

Optional; is
assigned based
on the input file
name when not

specified

Write Mandatory Optional;
defines the
HeaderXml

file to be used
when not

provided as the
first row

within the
input csv file

Optional; is
assigned based
on the input file
name when not

specified

Import Mandatory Optional;
defines the

image folder
base name

when image
file names are

relative

Optional; is
assigned based
on the input file
name when not

specified

Page 10 of 194

X9Utilities User Guide X9Ware LLC

Function Input File Image Folder
Secondary
Input File Output File Results File

Export Mandatory Optional;
defines the

image folder
when image

files are
written

Optional; is
assigned based
on the input file
name when not

specified

ExportCsv Mandatory Optional;
defines the

image folder
when image

files are
written

Optional; is
assigned based
on the input file
name when not

specified

Validate Mandatory Optional; csv of
errors that were
found; assigned

based on the
input file name

when not
specified

Scrub Mandatory Mandatory;
defines the
scrub xml

parameters file
to be used

Optional; is
assigned based
on the input file
name when not

specified

Optional; csv of
fields that were

scrubbed;
assigned based
on the input file
name when not

specified

Update Mandatory Mandatory;
defines xml
file which is

used to
identify the
field level

update
parameters

Optional; is
assigned based
on the input file
name when not

specified

Optional output
csv file name

Split Mandatory Mandatory;
defines xml
file which is

used to
identify the

field level split

Not allowed; it is
defined within
the xml file.

Optional output
csv file name

Page 11 of 194

X9Utilities User Guide X9Ware LLC

Function Input File Image Folder
Secondary
Input File Output File Results File

parameters

Make Mandatory;
defines the input

use case file.
Along with the
input file, you

must specify the
“-reformatter” and

“-generator”
switches to define

those xml files,
which are

mandatory as well.

Optional;
defines the

routing list file
when it is not
defined within
the generator

xml file.

Mandatory;
defines the

output file to be
created.

Merge Mandatory;
defines the input

folder that
contains the files

to be merged.

Mandatory;
defines the

output file to be
created.

Compare Mandatory Mandatory;
defines the
secondary

input file to be
compared

against

Optional output
text file name

ImagePull Mandatory Optional;
defines the

image folder
when image

file names are
relative

Mandatory;
defines csv file
which is used
to identify the
item images to

be pulled

Optional; defines
output csv file

which identifies
the images that

have been pulled.

Work Units

A work unit is a combination of all entered fields which describe the X9Utilities task to be performed.
A work unit can be saved to xml and then subsequently loaded at a future time, allowing the work unit
to be performed again. The load and save buttons on the right side panel are used for this purpose.
Work units are stored in folder / documents / x9_assist / xml / x9utilities /. The ability to save and
subsequently reuse work units allows task to be performed repetitively as needed. This might be used
to perform a user periodic task and eliminates the need to create a batch script for that same purpose.

Page 12 of 194

X9Utilities User Guide X9Ware LLC

Work units can not only be stored, but can also organized into subfolders within / documents / x9_assist
/ xml / x9utilities /.

X9Utilities Console

The console is used to display system log information for each new task that is executed. The console
is initialized at the start of each new task and will be updated with log snapshots as the task is run.
There are limits as to how much information can be shown within the log, which requires some
truncation when the logging becomes excessive. In these situations, logging will be suspended. The
console will still contain the very last lines from the log, which is important since these lines may
contain output file names, totals, error messages, etc. Console content can be scrolled (using the scroll
bar on the right) and can be copied to the clipboard (using CTRL A and then CTRL C). Once copied to
the clipboard, the text can be pasted into other external applications as needed for specific purposes.

JDK Requirements

The console requires JDK 11 or higher for execution.

Function Execution

User input is edited interactively and errors and shown when identified. Once a valid work unit has
been entered, it can be optionally saved and ultimately executed using the run button on the action line.
Many tasks will run very quickly. Depending on the function performed, the number of files involved,
and the relative size of those files, the run may take an extended period of time. The console has several
indicators to inform you that a utility task is running:

• The background of the X9Utility console is changed from gray to cyan while the task is in a
running state, and will be changed back to gray on completion.

• Exit status on the action line will be changed to “running” while the task is in a running state,
and will be changed to the numeric exit status on completion.

• The status icon on the action line will be changed to a “runner” image while the task is in a
running state, and will be changed back to a green/red icon on completion.

A popup message will displayed on completion that provides the exit status and the name/size of the
output file. The elapsed time (in seconds) will also be displayed on the action line.

Command Line as Executed

The console includes a display box which shows the command line as executed. This is provided for
several reasons:

• First is that it provides details on how the command line is formulated and thus is very helpful
for exposure into the technical workings of the utility. You can compare the content of the

Page 13 of 194

X9Utilities User Guide X9Ware LLC

formulated command line against the X9Utilities User Guide to fully review the command
formats.

• Second is that the command line can be used as the basis for developing batch scripts. This
would be done by fully testing the function to be performed, and then by creating a batch script
from the command line. The new batch script may have certain parameters or file names turned
into symbolic parameters, increasing both flexibility and usability.

Demonstrations

The following are examples of using the utilities console through a series of sequential operations:

Function Steps needed to run the demonstration

(1) Export x9.37
data + images

into fixed
column CSV

format.

• Select the EXPORT function using the drop down box.
• You will first need an x9.37 file to be exported. A good example would

be to copy our sample file “Test ICL with 10 checks.x9” to your
documents folder. You will find this x9 file in the program installation
folder; for example in C:\Program Files\X9Ware LLC\X9Utilities
R4.11\samples\files\. The file needs to be copied, because export will
(by default) put the output CSV file and image folder next to the input
file, so you need to use a folder where you have write privileges.

• You will notice a series of file selection rows that are used to identify
the input and output files for the current function that is to be
executed. These rows select files that are automatically populated into
the command line. The first of these rows is for the input file.

• Once you have copied your sample x9 file to your documents folder,
you then need to use the SELECT button to browse and select this as
the input file.

• Take a look at the switches; you can change these as desired. You will
need to look at the X9Utilities User Guide for more information on the
switches that are available. A good first test would be to export into
fixed CSV columns with images and create a summary JSON file
totals. The switches for this would be entered as: -xf -i -j

• Look at the box which contains the command line as it will be
executed. This shows exactly how the command line has been
constructed based on your input file and entered switch values.

• Hit the RUN button in the lower right to execute X9Utilities.
• The X9Utilities system log will scroll as the command executes, and

will eventually show as “finished” when complete. A popup box will
be displayed and you can click OK.

• When the export has completed, you will find the exported CSV file
and the associated images located in your input folder.

• Open the exported CSV file (for example, with a text viewer) and take
a look at the export contents. You can use the documentation provided
in the X9Utilities User Guide for a definition of the fixed format

Page 14 of 194

X9Utilities User Guide X9Ware LLC

Function Steps needed to run the demonstration

columns that have been created.
• This example has assigned defaults for the image folder (secondary

file) and the output file. You can alternatively assign these using
SELECT. When you do that, you will also see these file names
populated into the command line box.

(2) Export x9.37
data + images
into variable
column CSV

format.

• This is just a variation on the above example (1). The difference is that
we will export into a variable number of CSV columns instead of into
fixed columns. The variable column format follows the record and
field definitions per the x9.37 standards. You will need to refer to the
x9.37 standards themselves (eg, the 2003 DSTU) for a definition of
this CSV format.

• Follow the above example, but change the command line switches to
indicate that variable columns should be created: -xc -i -j

• Look at the box which contains the command line as it will be
executed. This shows exactly how the command line has been
constructed based on your input file and entered switch values.

• Hit the RUN button in the lower right to execute X9Utilities.
• Review output as described in the above export example.

(3) Import x9.37
from an

exported file, or
a CSV of your

creation.

• This example builds on the above example (2), where the output file is
in variable column CSV format. For the purposes of import, this
format is mandatory, since import requires that the input file be
constructed using the variable (records and fields) layout. This
provides a very strict definition of the x9.37 file to be created.

• Select the IMPORT function using the drop down box.
• Set command line switches to write a JSON summary file and to also

include additional logging: -j -l
• Use the input file SELECT button to select the variable columns CSV

file that was created by example (2) above.
• Use the output file SELECT button to identify the output file that is to

be written. For example, you can create the output file in the same
folder where your input file exists. Following the example, we suggest
that you create the output file as “Test ICL with 10 checks
imported.x9”.

• Review the selected files to ensure that they are correct.
• Review the “command line” box for insight into how the import

command has been constructed.
• Hit the RUN button in the lower right to execute X9Utilities.
• Review the created x9.37 file. You will see that it is has the exact same

content as the x9.37 file that was originally exported.

(4) Compare two
x9.37 files.

• This example builds on the above examples (2) and (3), where
example (2) exported a file to data+images, and example (3) then
imported the data+images to create a new x9.37 file.

• Given the simplistic flow of those two processes, we would expect the

Page 15 of 194

X9Utilities User Guide X9Ware LLC

Function Steps needed to run the demonstration

original x9.37 file to be equal to imported x9.37 file, which was
constructed from a combined export-import process.

• Select the COMPARE function using the drop down box.
• Use the input file SELECT button to select the x9.37 that was input to

example (2), which was the original file exported into variable column
format.

• Use the secondary file SELECT button to select the x9.37 file that was
created by example (3), which was an import of the CSV file in
variable column format.

• Hit the RUN button in the lower right to execute X9Utilities.
• Review the created “_output.txt” and “_output.csv” files, which will

contain all identified differences.
• Also take a look at the exit status that was posted by X9Utilities,

which should be zero.

Reusing a Saved Work Unit

The console can be used to save a work unit to xml for subsequent reuse. This work unit can be used to
the batch version of X9Utilities to rerun this command in a batch environment. This can be useful when
a function needs to be performed in a batch environment and can be repeated exactly as originally
performed via the console. In some situations, this may eliminate the need to develop and test a batch
script to perform the same function. The work unit is provided to X9Utilities using the -workUnit:“-
fully qualified file name” command line parameter. No other parameters or switches are required. You
can review the created xml file for more insight into the work unit xml definition and embedded
content.

Page 16 of 194

X9Utilities User Guide X9Ware LLC

X9Utilities and Related ProductsX9Utilities and Related Products

X9Utilities is a command line (batch) utility environment which supports a variety of functions to
facilitate commonly required x9 file processing. The following specific functions are currently
implemented within X9Utilities:

Product Supported Functions Supported Environments

X9Utilities Create
Write
Draw
Translate
Export
ExportCsv
Import

Validate
Scrub
Make
Update
Split
Image Pull

Windows, Linux, OSX.

X9Export Export
ExportCsv
Translate

Windows, Linux, OSX.

X9Utilities is designed with a simple CSV interfaces for complex operations such as x9 file write.

X9Utilities provides an extremely high level of functionality for x9 users who need to write, read,
export, import, validate, and scrub x9 files from their internal applications environment, but do not
require the more extensive capabilities and complexities that are typically associated with using an
SDK based product. Why acquire and use more complex and expensive tools than you really
need? If you need to read and write x9 files, then X9Utilities is the best tool for the job at hand.

X9Utilities will do all the heavy lifting on your behalf. It uses our SDK and assumes all
responsibility for field alignment and padding based on each x9 field definition, per the x9
standards. Images are converted as needed to be TIFF x9.100-181 compliant.

X9Utilities is full function, easy to use, includes our standard support, leverages our SDK, and is
very competitively priced when compared to other alternatives within the x9 marketplace.

X9Utilities is designed to process both ICL and ICLR files. It supports a wide variety of x9 record
types including credits, addenda records and type 68 user records.

X9Utilities is targeted for those organizations who need access to their x9 data (records and tiff
images) that are embedded within x9 files. X9Utilities provides the power you need to both read
and write these files using your languages such as VB, C++, Java, PERL, RUBY, Python, or
similar tools. Anything that can read and write CSV files can work with X9Utilities.

Page 17 of 194

X9Utilities User Guide X9Ware LLC

X9 Image Exchange StandardsX9 Image Exchange Standards

There are many standards that are associated with x9 image exchange which are maintained by
several standards committees:

The standards body for Financial Services is Accredited Standards Committee (ASC) X9, Inc.
which administers the American National Standards (ANS). This group defined the initial DSTU
x9.37 standard in 2003 as part of the initial implementation of electronic check image exchange.
Standards for this group can be referenced at:

http://www.x9.org

The American National Standards Institute (ANSI) group has subsequently defined various
industry standards for image exchange. This includes updated x9.37 exchange standards (x9.100-
187-2008 and x9.100-187-2013) as well as TIFF exchange standards (x9.100-181). Standards for
this group can be referenced at:

http://www.ansi.org/

The DSTU x9.37 standard has been retired since has been replaced with the newer x9.100-187. We
will not attempt to provide a link here, but you can easily find this PDF document with a few
Google searches.

Major financial institutions and third-party processors have banded together to define what is
termed as the Universal Companion Document (UCD). This document provides excellent
information on how the x9.100-187-2008 standard has been implemented by a large subset of
processors. To quote their website: “The purpose of this document is to formalize an industry
standard for check image exchange using the ANS X9.100-187-2008 standard format and a
compilation of industry best practices. This document is not intended to replace the ANS X9.100-
187-2008 standard, but rather to clarify how financial institutions should use the standard to ensure
all necessary and appropriate payment data is exchanged between collecting and paying
institutions.:

You can reference this copy of the UCD on the Check Image Central website at:

http://www.checkimagecentral.org/

Page 18 of 194

http://www.x9.org/

X9Utilities User Guide X9Ware LLC

Windows EXE Batch ScriptsWindows EXE Batch Scripts

In the Windows environment, a batch script (also known as a batch file) is a system text file that
contains instructions which are used to generate actual commands to be executed. A Windows
batch file typically has the “.bat" extension and is invoked from the command prompt. When you
type the batch file name at the command prompt, the Windows command interpreter (Cmd.exe)
will run the specified commands sequentially as they appear within the batch file. Comments may
be included in your batch file and are identified with a leading “:". Batch scripts may contain blank
lines as needed for clarity.

These sample batch scripts have been developed for “-write" usage. However, the concepts
presented here can be used as a basis for other similar functions. They are being provided on an
informational “as is" basis. The concepts presented here are provided as examples only, with the
understanding that they would need to be modified to meet specific customer needs. As with all
examples, you will need to thoroughly test any resulting batch file for applicability to your specific
environment. The batch files are provided here and also in the x9utilities distribution.

x9writer.bat – example #1

A simple batch script which runs X9Utilties on Windows is as follows:

The batch file is:

@echo off

: Run x9utilities using the "-write" function to create a new x9 file from an input csv.

: %1 is the headerXml file
: %2 is the inputCsv file
: %3 is the outputX9 file

cd "c:/Program Files (x86)/X9Ware LLC/X9Utilities Rx.xx
x9util -write -j -l -xml:"%1" "%2" "%3"

exit /b

Which could be invoked as follows:

@echo off
: Invoke x9utilities using the x9writer.bat script.
set "headerXml=c:/users/x9ware5/documents/x9_assist/files_Utilities/x9headers.xml"
set "inputCsv=c:/users/x9ware5/documents/x9_assist/files_Utilities/test1000Reader.csv"
set "outputX9=c:/users/x9ware5/documents/x9_assist/files_Utilities/test1000Reader writer2.x937"

call "c:/users/x9ware5/dropbox/batchFiles/x9writer.bat" %headerXml% %inputCsv% %outputX9%
exit

Page 19 of 194

X9Utilities User Guide X9Ware LLC

x9writerProcessor.bat – example #2

This more complex example is designed to scan an input folder and run x9utilities against an input
csv file folder and create output x9 files. The process is designed to be invoked from an application
environment but could also be trigger externally from the Windows Scheduler. The design is based
on the following objectives:

• Process all csv files that are present in the input csv folder.
• Run x9utilities for each csv file that is present.
• Ignore all non-csv files that are present in the input folder.
• Move each csv file to a time stamped processed folder, which will prevent it from being

selected in the next processing run. This move is only done when the output file has been
created in the output folder, which indicates that the operation has been successful.

The batch file is:

@echo off

: Process all CSV files from a folder through x9utilities.
: Each file is moved to a date stamped processed folder so it can only be run once.
: Process folders are date stamped to allow them to be retained for future reference.

SETLOCAL ENABLEEXTENSIONS
set "csvExtension=csv"
set "x9Extension=icl"
set headerXml="c:/users/x9ware5/documents/batTest/x9headers.xml"
set "csvInputFolder=c:/users/x9ware5/documents/batTest/input"
set "outputFolder=c:/users/x9ware5/documents/batTest/output"
set "processedFolder=c:/users/x9ware5/documents/batTest/processed"

: Assign output file timestamp from the current system date and time, in YYYYMMDD_HHMMSS format.
set "sysdate=%DATE: =0%
set "systime=%TIME: =0%
set "currentYYYYMM=%sysdate:~10,4%%sysdate:~4,2%"
set "currentYYYYMMDD=%currentYYYYMM%%sysdate:~7,2%"
set "currentTime=%systime:~0,2%%systime:~3,2%%systime:~6,2%"

: Process all CSV files that currently exist within the csv input folder.
setlocal EnableDelayedExpansion
for %%a in ("%csvInputFolder%*.%csvExtension%") do (
 : Get the csv file name which excludes the leading path name and the trailing file extension.
 set "csvName=%%~na"

 : Assign output file name and trim any resulting leading or trailing spaces.
 set outputFileName="!outputFolder!/!csvName!_!currentYYYYMMDD!_!currentTime!.!x9Extension!"
 CALL :TRIM outputFileName

 : Invoke x9utilities to process this specific (individual) file.
 cd "c:/Program Files (x86)/X9Ware LLC/X9Utilities Rx.xx"
 x9util -write -j -l -xml:"!headerXml!" "%%a" "!outputFileName!"

 : Append the csv file modification YYYYMM as a suffix to create the processed folder name.
 set "csvProcessedFolder=!processedFolder!_!currentYYYYMM!

 : Allocate the output folder when it does not currently exist.
 if not exist "!csvProcessedFolder!" md "!csvProcessedFolder!"

Page 20 of 194

X9Utilities User Guide X9Ware LLC

 : Move this csv file from the input folder to the processed folder to eliminate it from any
future processing.
 if exist "!outputFileName!" move "%%a" "!csvProcessedFolder!/!csvName!.%csvExtension%"
)

pause

exit /b

:TRIM
SetLocal EnableDelayedExpansion
Call :TRIMSUB %%%1%%
EndLocal & set %1="%tempvar%"
GOTO :EOF

:TRIMSUB
set tempvar=%*
GOTO :EOF

Batch Image Conversions

Images must be provided to X9Utilities in standard exchange format per the x9.100-181 standard,
which can be purchased at https://webstore.ansi.org . This standard defines the TIFF tags that must
be used when generating the black-white (binary) images that are required per x9.37.

All commercial scanners have the ability to generate images in this format, given that these
vendors understand this requirement and thus generate images accordingly.

Part of the standard is that images must be presented at either 200 or 240 DPI. It is important to
note that it is not acceptable to capture images at some other lower DPI (perhaps 96) and then
resize and upscale the images to 200 DPI. Although this technically accommodates the
requirement, it does not capture and forward the image at the density that downstream processors
will need for their subsequent processing. Remember that the captured images are going to be used
by automated applications for detailed image analysis, and also that they will be stored in image
archives for a minimum of seven years. The bottom line is that it is mandatory that images be
scanned at 200/240 DPI by the original capture device.

Once a 200/240 DPI image exists, it is then possible to translate that image from the original
format to an x9.100-181 TIFF compatible image. If this cannot be done by the capture device, it
can be subsequently converted by a large variety of tools including ImageMagick, IrfanView,
LibTiff, JAI, and many others. Imaging tools can be incorporated directly into the capture process,
or the images can be converted as part of a later processing flow.

It is possible to apply batch conversion of images from one format to another, where the input and
output images are stored at the folder level. In other words, a folder of images are converted from
some format (for example, PNG or TIF) to the x9.100-181 TIFF format. The following is an
example of running IrfanView in command line (batch) mode to do this conversion at a folder
level, which will read all input images and write them to an output folder:

:: IrfanView batch conversion - folder to folder.
:: Input can be almost any image format -- output will be x9.100-181 compliant tiff.

Page 21 of 194

https://webstore.ansi.org/

X9Utilities User Guide X9Ware LLC

:: %1 is the input folder terminating with wildcard (eg, *.tif).
:: %2 is the output folder terminating with wilcard (eg, *.tif).
:: Input images must be dpi 200 or 240, since IrfanView will not change the image dpi.
:: There is a "/dpi=" command, but that refers to the dpi when scanning (not converting).

cd "c:\Program Files\IrfanView"
i_view64.exe %1 /bpp=1 /tifc=4 /convert=%2

exit /b

Emails on failures

In production environments it is often beneficial to include error reporting via emails. Although
there is not standard support for email origination in Windows batch, there are various mechanisms
and tools that can be used for this. One such freeware tool is Blat, which is typically used for this
purpose. The following is an example of blat email origination based on the error level.

if %errorlevel% lss 0 (
 set to = "-to eMail\@MyDomain.com"
 set f = "-f eMail\@MyDomain.com"
 set server = "-server smtp.MyDomain.com"
 set subject = "-subject \"Testing blat\""
 set body = "-body \"Testing blat\""
 set debug = "-debug"
 blat - %to% %f% %subject% %body% %server% %debug%
)

Page 22 of 194

X9Utilities User Guide X9Ware LLC

Java JRE and Command Line ScriptsJava JRE and Command Line Scripts

X9Utilities can be run on either the Oracle or OpenJDK at version 8 or higher. Our development
environment currently runs on Zulu-8 (OpenJDK).

The following is an example of running the X9Utilities JAR in a Windows JVM environment. This
sample can be used as a model for various Linux and Unix environments. The batch script is as
follows:

@echo off
set inputFile="c:/users/x9ware5/documents/x9_assist/files_Utilities/Test file
with 2 checks reader.csv"
set outputFile="c:/users/x9ware5/documents/x9_assist/files_Utilities/Test file
with 2 checks writer.x937"
cd "c:/Users/X9Ware5/X9WareDrive/X9Utilities"
java -Xmx512m -jar x9utilities_4.xx_yyyymmdd.jar -write -j -l %inputFile%
%outputFile%
pause
exit

Using a Fully Qualified “java.exe" Reference

On most environments, there may well be multiple versions of the Java Runtime Environment
(JRE) installed. When you execute “java" command, it will run that version of the Java JVM that
has been assigned as the system default, which typically will be the most recent version of the Java
JRE that has been installed. However, be advised that this may or may not be what you expect.
X9Ware requires Java SE 1.8 or higher. Most specifically, you cannot use Java EE (Enterprise
Edition) due to potential class loading issues. If you have multiple versions of Java installed on
your workstation, then we highly recommend that you fully qualify the “java.exe" command
reference. For example,

“c:/Java/jre1.8.0_171/bin/java.exe" -Xmx512m -jar
x9utilities_4.xx_yyyymmdd.jar -write -j -l %inputFile%

Page 23 of 194

file:///c:/Users/X9Ware5/X9WareDrive/X9Utilities

X9Utilities User Guide X9Ware LLC

System LogSystem Log

X9Utilities is built on top of the X9Ware SDK where logging is implemented using SLF4J.
X9Utilities is then bound to the JDK logger as an actual implementation.

X9Utilities creates a new time stamped logging file as part of each run. The logging file can be
very helpful in numerous situations:

• The command line is logged which can be helpful to confirm that you batch script is
providing the command line as expected.

• The “-l" command line switch can be used to adding record level logging during
development and debugging.

• Input and output file names are logged which can serve as an audit trail for each run.
• The release and build level are included as informational items.
• Program exceptions are logged which can be provided to X9Ware LLC should you

encounter application issues.

By default, system log files are written to Windows folder / AppData / X9Ware LLC / log / and to
Linux folder / home / x9_ware / log/. You can override this default folder location through use of
the “-log" command line switch which specifies the folder location where logs should be created
and written. An example of this parameter is -log:"c:/userFolder/logs/".

X9Utilities will retain log files for up to three days after which they are automatically deleted. You
can adjust this retention period by providing an “options.xml" file which indicates the number of
days that you would like the logs retained. You can use X9Assist or X9Validator to create your xml
options file.

A sample system log is as follows:

X9Utilities started; logFolder[defaulted] [11:24:34.615]
systemLog(C:\Users\X9Ware5\Documents\x9_assist\log\x9assist_20161109_112434_594.log) [11:24:34.628]
command line: -t -x -l -write c:/users/x9ware5/documents/x9_assist/files_Utilities/Test file with 2 checks writer.csv
c:/users/x9ware5/documents/x9_assist/files_Utilities/Test file with 2 checks writer.x937 [11:24:34.629]
console window can be enabled using x9utilConsoleModeOn.bat and disabled using x9utilConsoleModeOff.bat [11:24:34.632]
input file(c:\users\x9ware5\documents\x9_assist\files_Utilities\Test file with 2 checks writer.csv) [11:24:34.634]
output file(c:\users\x9ware5\documents\x9_assist\files_Utilities\Test file with 2 checks writer.x937) [11:24:34.634]
properties defaulted [11:24:34.637]
launch folder defaulted from absolute path(C:\Users\X9Ware5\X9WareGitRepository\x9Utilities) [11:24:34.638]
homeFolder set from FileSystemView(C:\Users\X9Ware5\Documents\x9_assist) [11:24:34.638]
X9Utilities SDK release(R3.06) build(2016.11.07) all supporting materials intellectual property of X9Ware LLC [11:24:34.639]
systemdrive(/c) user(X9Ware5) javaHome(C:\Program Files\Java\jre1.8.0_91) javaVersion(1.8.0_91) isJetCompiled(false)
[11:24:34.640]
startup environment: Java is64Bit(true) total memory(125,952k) free memory(119,286k) [11:24:34.641]
….
….
all image readers closed [11:24:35.188]
thread pool closed; largestPoolSize(3) completedTaskCount(3) activeThreads at shutdown(0) [11:24:35.189]
shutdown complete [11:24:35.189]
X9Utilities exitStatus(0) [11:24:35.189]
log closed [11:24:35.190]

Page 24 of 194

X9Utilities User Guide X9Ware LLC

Console LoggingConsole Logging

X9Utilities is distributed with console logging active (in additional to file logging). The console
window is opened immediately as part of initialization. Messages are displayed within this
scrolling window as the utility executes. Further considerations are:

• The console window will remain open as long as X9Utilities is running.

• The console window will be closed when X9Utilities is completed and not paused by a
batch script.

• All message levels are written to the console window (it is a full copy of what is written to
the system log). This includes possible DEBUG level messages which may be enabled.

• When X9Utlities is being run from a batch script, you can include a PAUSE statement that
will allow the console window to remain open (at the pause point). You can then use the
enter key to allow the batch script to continue and ultimately complete.

In some environments, it may be desirable to hide the console window. For example, you may
want to turn off console logging in a production-based server environment. Keeping the console
window enabled does not create issues. However, since the console window is not needed, it may
be a distraction and can be easily turned off.

X9Utilities console mode is controlled by the following command line switches:

• “-consoleOn" is used to enable the console, which is the default when omitted.

• “-consoleOff" is used to disable the console.

Page 25 of 194

X9Utilities User Guide X9Ware LLC

System Log CorrelationSystem Log Correlation

Each execution of X9Utilities creates it’s own unique system log using a time-stamped file name,
where each log file is located in the / AppData / Roaming / X9Ware LLC / log / folder. This default
folder location can be changed using the “log:" command line switch.

In more complex environments, it may be helpful to be correlate the system log from each
X9Utilities run back to specific application processing or logical events. This need and
implementation is customer specific. The facility is used as part of external processing of the
system log, perhaps using automation / aggregation tools such as Splunk. In these situations it may
be useful to be able to correlate a given system log against expected events that are being initiated.
For example, a line can be inserted into the system log when a given file is processed, which can
then be matched against file origination. Similarly, individual runs can be identified and as an
index for errors / exceptions that are detected.

In support of this, X9Utilities has several facilities that allow user lines to be inserted directly into
the system log. These are as follows:

• The “-logger:" command line switch allows user defined text to be written directly to the
system log. Care should be used to include this logging string with quotes, given that there
may be embedded blanks. An example might be: -logger:"run 56893".

• Additionally, the “-write" function supports the a “logger" csv line type which can be used
in a similar fashion to writer user defined text directly to the system log. Since this line is
included within the incoming csv file, the content can be at a very detailed level. For
example, the logging line might identify a specific deposit that could be matched via
against an application origination event. An example might be: logger,"deposit 4199306".

Please let us know if there are enhancements or extensions that would provided improvements to
these log correlation facilities.

Page 26 of 194

X9Utilities User Guide X9Ware LLC

Command HelpCommand Help

X9Utilities can provide command level help when the console window is enabled. This facility can
be used to easily obtain a quick description of each X9Utilities command and eliminate the need to
reference the X9Utilities User Guide.

A more detailed list of help information for X9Utilities commands can be obtained as follows:

===
command usage:
x9util -console -h
x9util -batch -h
x9util -script -h
x9util -write -h
x9util -create -h
x9util -draw -h
x9util -translate -h
x9util -import -h
x9util -export -h
x9util -exportCsv -h
x9util -validate -h
x9util -qualify -h
x9util -make -h
x9util -merge -h
x9util -update -h
x9util -split -h
x9util -compare -h
x9util -scrub -h
x9util -imagePull -h
-h provides more detailed information for each of the above functions
===

For each X9Utilities command, you can then also ask for more detailed help. For example, you can
enter “x9util -write -h" which provides the following output:

===
command usage:
x9util -write inputFile.csv [outputFile.x9]
[-config] [-l] [-j] [-x] [-t]
writes a new x9 output file from the provided input csv file
all image filenames must be provided in absolute format
outputFile defaults to inputFile.x9 when not specified
-config specifies the x9 configuration to be loaded
-l lists all records to the log
-j creates the json totals file in the output folder
-x creates the xml totals file in the output folder
-t creates the text totals file in the output folder
===

Page 27 of 194

X9Utilities User Guide X9Ware LLC

Exit CodesExit Codes

X9Utilities utilizes standard exit status codes, also known as exit status or error level, to convey
information about the outcome of program execution. These exit codes are numeric values that are
posted upon program completion.

In the context of X9Utilities, exit codes are represented as 32-bit signed integers. Conforming to
general conventions, a positive exit status signifies successful execution, while a negative exit
status indicates an error or failure.

X9Utilities will assign positive exit codes to indicate that processing was successful and output
file(s) have been created. Alternatively, X9Utilities will assign negative exit codes to indicate that
there has been some type of failure and that processing has been aborted.

When the exit code is non-zero (either greater than zero or less than zero), the system log will
contain messages detailing the encountered conditions.

During program completion, many X9Utilities functions will rename their output files from
"TMP" to the final filename, but this renaming action only occurs when the exit code is positive.

X9Utilities employs standard exit codes across all functions to denote absolute success (zero) or
absolute failure (negative). Additionally, depending on the specific function being executed,
additional positive exit codes may be used. The table below outlines the standard zero and negative
exit codes used by X9Utilities:

Exit Code Usage

0 Execution was successful.

-1 Execution was aborted due an internal error. Refer to the created system log for
more information. If you are unable to resolve the issue, please provide the
system log and any other supporting information to X9Ware to allow us to resolve
the issue.

-2 Invalid or missing function was provided on the command line. Refer to the
system log which includes an echo of the command line exactly as provided.

-3 Input file for the selected function was not found. The system log includes a path
trace which provides additional information on the file search that was performed
and where the not found condition was identified within the file system.

Page 28 of 194

X9Utilities User Guide X9Ware LLC

Batch / Script OperationsBatch / Script Operations

Batch and script operations are available to meet the needs of more advanced processing
requirements. The usual X9Utilities run relies on a command line that contains the switches and
file names that are needed to invoke a specific process. Alternatively, batch and script operations
build a sequence of work units to be executed on top of command line processing, allowing a
single X9Utilities run to process multiple files. There are two types of operations:

• The "-batch" command line switch triggers batched operations. In this scenario, a standard
command line with the "-batch" switch is provided as a model to create a series of work
units. The input file on this command line contains a wild card pattern (e.g., using an
asterisk with the file name). Batch operations identify all files within the input folder that
match this wild card pattern and create work units for each file. For example, the input
command line may be expanded into hundreds of work units depending on how many files
match the pattern.

• The "-script" command line switch starts scripted operations. In this case, the input file is a
text (txt) file that contains the command lines to be executed. Script operations read the
indicated text file and generate a run unit for each line contained within the script. This
processing is similar to batched operations but provides even more control over the
command lines to be executed since they can be created by your customized scripting
process.

The “-threads:n" command line switch is used to optionally define the number of background
threads that will be used for processing. The default is no threading, which will result in the work
units being run sequentially. When threading is initiated, the work units are then assigned to
background threads and will be run in a more random order. Threading will reduce the overall
elapsed time, given that processing will be run concurrently. It has the side effect that a higher
level of CPU time will be used as the work units are executed, to the detriment of other
applications running within this same environment. All processing will be recorded within a single
system log. Care should be taken to sure that all needed resources, and especially virtual memory,
are made available to x9utilities.

The “-aoe:n" command line switch is used to optionally indicate that overall execution should be
aborted when there are some number of work units that were aborted, where this is identified by a
negative exit status. For example, the “-aoe" switch indicates that overall execution should end (as
soon as possible) when an exception has occurred. In this situation, although no new work units
will be started, those that are currently executing will continue to their completion. All subsequent
work units will be flushed and not executed. Another example would be “-aoe:2", which would
allow one exception but would begin to flush work units after there are two exceptions.

In support of batch operations, there

Page 29 of 194

X9Utilities User Guide X9Ware LLC

Parameter Description Example

#fn# File name. C:\Users\X9Ware5\Documents\x9_assist\
files\Test ICL with 100 checks.x9

#fp# File path. C:\Users\X9Ware5\Documents\x9_assist\
files\

#fpns# File path no separator. C:\Users\X9Ware5\Documents\x9_assist\
files

#fnnx# File name no extension. C:\Users\X9Ware5\Documents\x9_assist\
files\Test ICL with 100 checks

#fnb# File name base. Test ICL with 100 checks

#fnx# File name extension. x9

#fnbx# File name base with extension. Test ICL with 100 checks.x9

#i# Work unit number. 5

#i2# Work unit number as 2 digits. 05

#i3# Work unit number as 3 digits. 005

#i4# Work unit number as 4 digits. 0005

#i5# Work unit number as 5 digits. 00005

#i6# Work unit number as 6 digits. 000005

#yyyyMMdd# Date formatted as "yyyyMMdd". 20230426

"#kkmmss#" Time formatted as "kkmmss" which
is based on the 24-hour clock.

220418

#HHmmss# Time formatted as "HHmmss"
which is based on the 12-hour
clock.

100418

#kkmmssSSS# Time formatted as "kkmmssSSS"
which is based on the 24-hour clock
and includes milliseconds.

220418521

#HHmmssSSS# Time formatted as "MMmmssSSS"
which is based on the 12-hour clock
and includes milliseconds.

100418521

#yy# Date as “yy". 23

Page 30 of 194

X9Utilities User Guide X9Ware LLC

#yyyy#" Date as “yyyy". 2023

#MM# Date as “MM". 04

#dd# Date as “dd". 18

#DDD# Date as “DDD" which is the julian
date within the year.

257

#kk# Time as hour from 24-hour clock. 22

#HH# Time as hour from 12-hour clock. 10

#mm# Time as minutes. 04

#ss# Time as seconds. 18

#SSS# Time as milliseconds. 521

An example of batch operations is as follows:

-batch
-threads:8
-scrub
"C:/Users/X9Ware5/Documents/x9_assist/imagePull_Testing/file*.x9"
"C:/Users/X9Ware5/Documents/x9_assist/xml/scrub/scrubParameters.xml"
"C:/Users/X9Ware5/Downloads/threadTesting/#fnb#_scrubbed.x937"
"C:/Users/X9Ware5/Downloads/threadTesting/scrubbedFields.txt"

An example of script operations is as follows:

-script "C:/Users/X9Ware5/Documents/x9_assist/test/translateAndWrite.txt"

Page 31 of 194

X9Utilities User Guide X9Ware LLC

Write and TranslateWrite and Translate

Reading and writing x9 files can quickly become a complex process:

• There are a large number of record types and data fields, all of which have very specific
value and alignment requirements.

• There are variable length records (especially for images) that must have their data elements
and lengths correctly formatted to allow the file to be parsed.

• There are multiple formats associated with the insertion of credits, since they were not
covered by the early x9.37 standards. This impacts the credit format, where they are
inserted into the x9 file, and their impact on trailer record counts and amounts.

• Most x9 files must be created using the EBCDIC character set (not ASCII) which further
complicates the creation process.

• Finally and most importantly, many financial institutions have implemented their own x9
file variant requirements, which further complicate an already difficult situation.

The Write and Translate functions are designed with the purpose of making this process as easy as
possible. By using these tools, you can concentrate on the actual x9 data content and not the
underlying complexities associated with x9 files.

Write is one of the most powerful x9 file creation tools that you will find anywhere in the
marketplace today, and has been designed to be easily incorporated into your application
environment. Write creates x9 files from a simple CSV (which defines your items) and a statically
defined HeaderXml definition (which defines the x9 file attributes). Although the CSV can be
provided in multiple formats, our recommended format has a single row per item, allowing it to be
easily created and viewed. The HeaderXml file (see the appendix) has 100+ parameters which
allows the x9 file to be written specifically to the requirements provided by your financial
institution in their companion document. All of the complexity of adapting to those requirements
are satisfied through the HeaderXml definition. Write is simple, straight forward, and very easy to
use.

Translate is provided within X9Utilities for completeness, but in reality will be seldom used in
most environments. Translate creates a CSV file in a format that can be used as input to write (they
share a common CSV format). In this way, Translate can be used to create a sample CSV from an
existing x9 file to provide some insight into the process. However, in the real world, our Export
function would more typically be used to convert a x9 file to an output CSV, since the entire
definition of the x9 file on a record and field basis is fully retained when using Export.

The CSV file begins with an optional header line and is terminated with an “end" line, as follows:

headerXml parameter line (optional since this can also be provided on the command line)
zero or more items
end

Several notes about the CSV file format are as follows:
Page 32 of 194

X9Utilities User Guide X9Ware LLC

• Although the first line of the CSV file can point to the HeaderXml file to be used by Write,
this is optional since that directive can instead be provided as a command line parameter
using the (“xml:" command line option). See the appendix for a full definition of available
HeaderXml file content.

• A zero items CSV file is totally valid and will result in the creation of a file with record
types 01, 10, 90, and 99.

• Quotes around numeric fields are optional and never required.
• Quotes around alpha fields are only required when the value contains embedded blanks

(since a blank will be considered the end of the input line if it is encountered outside of a
quoted field). Make sure you include quotes around field values that potentially can contain
blanks. This is especially true of file names.

• Our recommended format for Write uses a “t25" line that contains both item and image
information. The remaining information is specified in the HeaderXml definition, which
allows the x9 file to be constructed as required by your financial institution. HeaderXml
includes various formatting instructions, indicators, addenda record information when
needed, and instructions on how and where an offsetting credit should be inserted. See the
appendix for a full definition of available HeaderXml file content.

A sample CSV file is as follows, which would default all type 25 record indicators to the
HeaderXml file:

t25,10002,44000001,087770706,"29602722/5526",,,,,"c:pathToFrontImage",“c:pathToBackImage"
t25,10004,44000002,097770592,"60333044/5587",,,,,"c:pathToFrontImage",“c:pathToBackImage"
t25,10006,44000003,077770392,"29343913/5178",,,,,"c:pathToFrontImage",“c:pathToBackImage"
end

Page 33 of 194

X9Utilities User Guide X9Ware LLC

Export and ImportExport and Import

Export and Import support multiple formats which are flexible to meet your specific needs. You
can work directly with your x9 files within their native record and field definitions, giving you
direct access to their encoded data. Export also has more simplified formats that are parsed into
fixed columns, which makes it very easy to work with that data. These various formats are easy to
use and are recommended over our “-read" format, which is typically used only as a companion
tool for our “-write" function and is very proprietary to X9Ware.

Export supports multiple output formats (CSV, XML, and text). The most powerful format is CSV
export into fixed columns, which exports each logical item as a single row with all associated data
elements parsed and written within the export utility. This allows your application to readily
process the data since all fields will be constant positions which simplifies your reformatting
substantially. You can optionally export the images when exporting into fixed columns, making it
useful in a wide variety of application situations.

As an alternative, Export and Import also support a CSV format that exactly matches the records
and fields that are defined within a x9 file (this is referred to as native format). When using this
specific format, Export and Import are complimentary tools. Export will read a x9 file and create a
CSV file with records formatted exactly as they appear within the x9 file. Import takes a similarly
formatted CSV file and creates an output x9 file.

Both of these tools allow you to specify the x9 configuration via the command line. This is an
important consideration, since the fields within a x9 record may potentially vary based on the x9
specification that is being used.

For example, the following sequence will take take an existing x9.37 file, export it to CSV, and
then import the CSV back to x9.37. The original file and imported file will be equal.

The export definition:

-l -t -i
-export
"c:/users/x9ware5/documents/x9_assist/files_Utilities/Test ICLR with 10 checks.x9"
"c:/users/x9ware5/documents/x9_assist/files_Utilities/Test ICLR with 10 checks.csv"

The import definition:

-l -t
-import
"c:/users/x9ware5/documents/x9_assist/files_Utilities/Test ICLR with 10 checks.csv"
"c:/users/x9ware5/documents/x9_assist/files_Utilities/Test ICLR with 10 checks.x937"

Page 34 of 194

X9Utilities User Guide X9Ware LLC

A sample CSV file in fixed column format is below where the item rows begin with “25" and the
column data is per our export documentation that you will find within the export topic.

01,03,"P",123456780,123456780,20141017,1201,"N","Test File","Test File","A",,,
10,01,123456780,123456780,20141016,20141017,1201,"I","G",1,"X9ASSIST",,"C",,,
20,01,123456780,123456780,20141016,20141017,57000000,1,,123456780,,
25,10000,44000000,057770930,"20915353/7837",,,"G",8,1,"Y",03,0,"B",,,,,,,,,20915353,7837,
,,,20141014,057770930,"TEST
KEY",,,26,123456780,20141014,44000000,,,,"Y",0,,,,,28,231382458,20141015,1,,,,"N",0,0,,,,
28,221374984,20141015,2,,,,"N",0,0,,,
25,10002,44000001,087770706,"29602722/5526",,,"G",8,1,"Y",03,0,"B",,,,,,,,,29602722,5526,
,,,20141014,087770706,,,,26,123456780,20141014,44000001,,,,"Y",0,,,,,28,231379636,2014101
5,3,,,,"N",0,0,,,,28,101103152,20141015,4,,,,"N",0,0,,,
70,0002,000000020002,000000020002,00004,,
90,000001,00000002,00000000020002,000000004,"File Generator",20141017,
99,000001,00000022,00000002,0000000000020002,,,

A sample CSV file in native format is as follows:

01,03,"T",123456780,123456780,20140810,1201,"N","VIEW","VIEW","A",,,
10,01,123456780,123456780,20140808,20140810,1201,"I","G",1,"X9Assist",,"C",,
20,01,123456780,123456780,20140808,20140810,57000000,1,,123456780,,
25,,,08777070,6,"29602722/5526",0000010002,44000001,"G",8,1,"Y",01,0,"B"
26,1,123456780,20140807,44000001,,,,"Y",0,,,
50,1,087770706,20140807,00,00,0006302,0,00,0,,,,,0,,
52,123456780,20140808,,44000001,,,,0,,,,,0000,,0,,0006302,"c:/users/x9ware5/documents/
x9ware/files_Utilities/Test file with 2 checks
exporter_IMAGES/Bundle_000003/Image_000007_amount_10002_front.tif"
50,1,087770706,20140807,00,00,0001865,1,00,0,,,,,0,,
52,123456780,20140808,,44000001,,,,0,,,,,0000,,0,,0001865,"c:/users/x9ware5/documents/
x9ware/files_Utilities/Test file with 2 checks
exporter_IMAGES/Bundle_000003/Image_000009_amount_10002_back.tif"
25,,,09777059,2,"60333044/5587",0000010004,44000002,"G",8,1,"Y",01,0,"B"
26,1,123456780,20140807,44000002,,,,"Y",0,,,
50,1,097770592,20140807,00,00,0006679,0,00,0,,,,,0,,
52,123456780,20140808,,44000002,,,,0,,,,,0000,,0,,0006679,"c:/users/x9ware5/documents/
x9ware/files_Utilities/Test file with 2 checks
exporter_IMAGES/Bundle_000003/Image_000013_amount_10004_front.tif"
50,1,097770592,20140807,00,00,0001865,1,00,0,,,,,0,,
52,123456780,20140808,,44000002,,,,0,,,,,0000,,0,,0001865,"c:/users/x9ware5/documents/
x9ware/files_Utilities/Test file with 2 checks
exporter_IMAGES/Bundle_000003/Image_000015_amount_10004_back.tif"
70,0002,000000020006,000000020006,00004,,
90,000001,00000002,00000000020006,000000004,"File Generator",20140810,
99,000001,00000018,00000002,0000000000020006,,,

Page 35 of 194

X9Utilities User Guide X9Ware LLC

File ID Modifier XML FileFile ID Modifier XML File

X9Utilities allows your File ID Modifier to be either assigned as an explicit value or assigned
indirectly from a File ID Modifier XML File. Some processors require that the File ID Modifier be
unique for a given file creation date. This requirement is typically based on their duplicate file
prevention logic.

The File ID Modifier XML File can be used as a tracking file for the automated assignment of
unique File ID Modifier values within the same processing day. When using this technique, you
will get a unique File ID Modifier (values from A through Z) each file creation date. For example,
the first would be created with a File ID Modifier of “A", the second with “B", the third with “C",
and so on. This is done automatically with no action on your part.

This facility is activated using the assigned File ID Modifier value as follows:

1. If the File ID Modifier is one character in length, then it is accepted and explicitly used.
2. If the File ID Modifier is four characters in length with a value of “auto", then a tracking

file is internally allocated by X9Utilities and will be used to assign sequential File ID
Modifiers.

3. If the File ID Modifier is greater than one character in length and is not “auto", then it must
be the fully qualified name of your XML tracking file. This file is used as input to get the
late date and File ID Modifier that was assigned and is then updated by the current run. If
the specified file name does not exist, then it will be automatically created.

4. Consecutive values are assigned within the same calendar day as follows:
▪ “identifierIsNumeric" can be set to a value of true which results in the assigned

consecutive alternate values of '1' through '0'.
▪ “identifierIsAlpha" can be set to a value of true which results in the assigned

consecutive alternate values of 'A' through 'Z'.
▪ Otherwise the value is assigned consecutively first from “A" through “Z" and then

from “1" through “0".

A same File ID Modifier XML file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<fileIdModifier>
 <copyright>X9Ware LLC 2012 2013</copyright>
 <product>X9Utilities</product>
 <release>R4.01</release>
 <timestamp>20191120_070349_148</timestamp>
 <fields>
 <fileDate>20141120</fileDate>
 <identifierIsNumeric>false</identifierIsNumeric>false
 <identifierIsAlphac>false</identifierIsAlpha>false

Page 36 of 194

X9Utilities User Guide X9Ware LLC

<fileIdModifier>auto</fileIdModifier>
 </fields>
</fileIdModifier>

Page 37 of 194

X9Utilities User Guide X9Ware LLC

Supported x9 ConfigurationsSupported x9 Configurations

The following x9 configurations are supported by X9Utilities:

Configuration Usage

x9.dstu-no-field-validations File level structural validations are applied with minimal
field validations.

x9.37 The DSTU x9.37 which was the first x9.37 standard
originally defined in 2003 and is the most basic and
commonly used standard throughout the industry.

x9.100-187-2008 The x9.100-187-2008 standard which is widely accepted
through the industry.

x9.100-187_UCD-2008 The x9.100-187-2008 standard with the associated
Universal Companion Document applied. This standard is
widely accepted by many financial institutions.

x9.100-187-2013 The x9.100-187-2013 standard which is increasingly
accepted through the industry. This standard includes the
type 62 credit record and was the first (beyond x9.100-180-
2006) to add credit support.

x9.100-187_UCD-2013 The x9.100-187-2013 standard with the associated
Universal Companion Document applied. This standard is
increasingly accepted by many financial institutions.

x9.CPA_015 The Canadian CPA 015 standard which is based on x9.100-
187-2006 and is implemented within Canada.

x9.Frb The Federal Reserve Bank (FRB) standard which is
accepted by a large number of institutions and processors.

x9.100-180-2006 The x9.100-180-2006 standard which is very infrequently
used within the industry due to more drastic changes that
were implemented (including the type 52 image record)
and the associated complexities that resulted from the
technical direction that was taken. This standard is
accepted by a very limited number of financial institutions.

Page 38 of 194

X9Utilities User Guide X9Ware LLC

Supported x9 Record TypesSupported x9 Record Types

Each item can contain the following x9 record types. Please refer to the appropriate x9
documentation for the format of these records.

Type Record Name Notes

25 CHECK_DETAIL “Write" can create credits as record type 25 when
needed by your financial institution

26 CHECK_ADDENDUM_A

27 CHECK_ADDENDUM_B

28 CHECK_ADDENDUM_C

31 RETURN_DETAIL

32 RETURN_ADDENDUM_A

33 RETURN_ADDENDUM_B

34 RETURN_ADDENDUM_C

35 RETURN_ADDENDUM_D

61 DSTU Credit Format Contains 12 fields per the DSTU credit format

61 Metavante Credit Format Contains 13 fields per the Metavante credit format

62 CREDIT

68 User Record Content is per user defined requirements

Page 39 of 194

X9Utilities User Guide X9Ware LLC

X9.37 Data TypesX9.37 Data Types

Per x9.37 exchange standards, the following data types may be defined and used within x9 files:

Data Type Description Content

A Alphabetic The alphabetic characters are the upper-case letters A through Z; the
lower-case letters a through z, and the blank (space) character. When
lower case letters are used, they are interpreted as having the same
meaning as their respective upper-case letters. However, use of lower
case characters is discouraged; all alphabetic characters should be
presented in upper case.

N Numeric The numeric characters are the numbers zero (0) through nine (9).

B Blanks The blank character is defined in ASCII with the value 0x20 and in
EBCDIC with the value 0x40.

S Special
Characters

Special characters are any printable characters with an ASCII value
greater than 0x1F or an EBCDIC hexadecimal value greater than 0x3F
that are neither alphabetic, nor numeric, nor blank. Occurrences of
values EBCDIC 0x00 through 0x3F and ASCII 0x00 through 0x1F‘
are not valid.

AN Alphameric An alphameric character is any of the alphabetic or numeric
characters.

ANS Alphameric
Special

An alphameric/special character is any one of the alphabetic, numeric,
or special characters.

NB Numeric Blank A numeric blank character is any one of the numeric characters or the
blank character. Blanks shall not be embedded within the numeric
digits, but instead can only be used to fill out a field when the numeric
value length is shorter than the actual field length. Leading zeros are
allowed.

NS Numeric
Special

A numeric/special character is any one of the numeric characters or
special characters.

B Binary Any binary byte with a value from 0x00 through 0xFF.

NBSM Numeric Blank
Special MICR

A numeric blank special MICR character is any one of the numeric
characters, the blank character, the asterisk character, the dash
character, or the slash character.

Page 40 of 194

X9Utilities User Guide X9Ware LLC

WriteWrite

Write is an advanced tool that can be used to easily create new x9 output files. In order to simplify
the overall x9 file creation process, Write controls the creation of bundles and their associated
trailer records. It calculates and inserts all required totals within the bundle, cash letter, and file
control trailer records. All of this is done automatically behind the scene. Writer input is created
by your internal applications in a simple CSV format. Images must be provided in TIFF image
exchange (x9.100-181) format as typically created by all industry scanners. A parameter file allows
you to specify various options including header and cash letter header values which are provided
externally in an XML file. Through the use of these header file parameters, write is designed with
the goal of being able to create an x9 file for any financial institution. We have incorporated a large
number of options which already make this possible for many endpoints and we continue to
enhance this process to work towards that goal. This may not always be possible given the
complexities that have been implemented by some processors. Please let us know where we can
make enhancements which may involve consulting costs subject to level of difficulty and
uniqueness of the required solution.

The following information is provided to write:

• Command line options: identifies inputs, outputs, and optionally the HeaderXml file to be
used to control formatting.

• HeaderXml: identifies header, trailer, and overall formatting of the x9 file to be created.
There are 100+ parameters within the HeaderXml file which can be used to generate the
output x9 file in the format as required by your financial institution. The HeaderXml file is
static and typically does not need to be modified once a new implementation is tested and
has been moved to production status. The HeaderXml file must be either identified on the
command line or on the first row of the input CSV file. See the appendix for a full
definition of available HeaderXml file content.

• Items CSV: defines the items to be written including amount, sequence number, MICR
routing, MICR OnUs, MICR AuxOnUs, EPC, etc. Several formats are supported for the
Items CSV file. The most generic and easy to use is the single line “t25" format which has
eleven (11) columns. Using that “t25" format allows the items CSV to be generic in nature,
with all formatting information required by your financial institution to be provided via the
HeaderXml parameter file. See the appendix for a full definition of available HeaderXml
file content.

• Front and Back images: which are referenced at the item level from your Items CSV and
thus externally defined in your file system. These images are highly recommended to be
encoded in the TIFF image exchange x9.100-181 standard format (which is the format
created by all compliant scanners). Images can be provided in other formats (JPG, BMP,
GIF, or PNG) but there are potential performance implications when doing so given the
processing time associated within image conversion.

Page 41 of 194

X9Utilities User Guide X9Ware LLC

Addendum records can be included on your CSV file and then incorporated into the x9 output file.
Your input can include type 26 (BOFD) primary endorsement records or can include type 28
secondary endorsement records. This similarly applies to the endorsement record types for
returned item files.

Command line options

Switch Description

-xml: Fully qualified headerXml file to be used for this run. The headerXml file
name should be enclosed in quotes. Example usage would be -
xml:"c:/users/userid/folderName/headerXml.xml".

-awx Abort when the selected output file already exists. The default action is to
allow output files to be overwritten. Setting switch -awx will force an abort
instead of overwriting the existing file.

-j A summary JSON file will be created with a suffix of “_summary.json" in
the same folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the
same folder as the output x9 file.

-x A summary XML file will be created with a suffix of “_summary.xml" in the
same folder as the output x9 file.

-l Will list all csv lines to the system log.

-dpi Assigns the output image dpi used to draw images, with a default of 240.
Assigned values must be either 200 or 240.

-imageRepairEnabled Enables automated image repair; this function is disabled by default.

-imageResizeEnabled Enables both automated image repair including automated image resize;
these functions are disabled by default.

-enp The “end" statement is not provided on the csv input file. Setting this flag
will eliminate an abort when the “end" statement is not present. This flag
should be used cautiously, since the purpose of the “end" statement is to
ensure that all items have been read and processed.

-batch Invokes batch (folder based processing; see that earlier topic for more
information.

-workUnit: Assigns command line parameters and files from an xml file that was
previously created and saved by the X9Utilities facility within X9Assist.
This allows you to easily repeat an X9Assist task directly in X9Utilities
batch.

Command line examples

 x9util -write <input.csv>

Page 42 of 194

file:///c:/users/userid/foldename/headerXml.xml

X9Utilities User Guide X9Ware LLC

reads <input.csv> and creates and <input.x937> within the designated folder. Since the
HeaderXml file is not present on the command line, it must be defined defined as the first
row within the CSV items file. Note that we suggest that you do not use this alternative, but
instead take advantage of the flexibility that is provided when you define HeaderXml on
the command line. See the appendix for a full definition of available HeaderXml file
content.

x9util -write <input.csv> <HeaderXml> <output.x937>

reads <input.csv> and creates <output.x937> at the fully qualified folder location. The
HeaderXml file is explicitly defined on the command line. See the appendix for a full
definition of available HeaderXml file content.

x9util -x -write <input.csv> <HeaderXml> <output.x937>

reads <input.csv> and creates <output.x937> and <output.xml> at the fully qualified folder
location. The HeaderXml file is explicitly defined on the command line. A summary XML
file will be created. See the appendix for a full definition of available HeaderXml file
content.

x9util -j -write <input.csv> <HeaderXml> <output.x937>

reads <input.csv> and creates <output.x937>, <output.xml>, and <output.txt> at the fully
qualified folder location. The HeaderXml file is explicitly defined on the command line. A
summary JSON file will be created. See the appendix for a full definition of available
HeaderXml file content.

X9 Configuration Reference

For most X9Utilities commands, the x9 configuration is provided via the command line using the
“-config" switch. However, -write instead obtains this parameter from the headerXml file. Because
of that, it is not appropriate to provide the x9 configuration via the -config switch.

Automated Image Repair

Write has the ability to automatically repair and/or resize images as part of loading images and
constructing the type 52 image records. Although this functionality exists, it is disabled by default
with our recommendation that it should not be utilized. Why is that? This is because your
application environment is the “system of record" for the images that are being created and
distributed. These images are the legal facsimile for these items. The receiving financial
institutions will be storing these images in their image archives for 7+ years for their internal use
and reference. Because of this, the creation of images is one of the most critical aspects of your
x9.37 image exchange application, where these images must be compliant with the x9.100-181
standard. You application should not defer these responsibilities to image conversion code that is
embedded in our “-write" function. There are several reasons for this:

• You will not have a copy of the repaired image (it will only be in the x9.37 image file).

Page 43 of 194

X9Utilities User Guide X9Ware LLC

• You will have no positive indication as to whether the attempt to repair the image has been
successful. If the repair is unsuccessful, then there will be no image present. Even if the
repair is successful, you will have no control over the final quality of that image.

• The image may be resized, which means that it will no longer represent the physical size of
the original item.

• Finally, image repair is an expensive operation and will dramatically slow the creation of
your output x9.37 file. When the images are repaired at this point in the process, it is being
done within the critical timeline path. It is much better to do it earlier.

If you are looking for tools, one option is: http://www.unisoftimaging.com/ . This product is able
to do apply good thresholding conversions to very difficult images, include Postal Money Orders.

MICR Line

The E-13B MICR characters consist of ten specially designed numbers (0 through 9) and
four special symbols (Transit, Amount, On-Us, and Dash). These characters and their usage on the
MICR line are described in detail in the “MICR Line" topic. Please refer to that section wihtin this
manual for more information.

HeaderXml Reference

The headers format can be provided on the command line (using the “xml" switch) or as the first
line within the items CSV file. There is no preference to these alternatives. Both are supported, so
you should choose the approach which works best for your application. Providing the HeaderXml
reference on the command line can be helpful since it makes the items file more generic and
independent of the target customer. Providing the HeaderXml reference with the items file allows
the csv to be a more complete package that defines the items as well as the wrapper rules. See the
appendix for a full definition of available HeaderXml file content.

Items

Forward presentment items are presented in one of several manners:

Line
Type

Field
Count

Usage Columns

* Lines that begin with an asterisk in column one will
be treated as comments. This would typically not be
used in a production file, but can be helpful when
building files during testing or writing your internal
documentation as to how your -write files are
constructed.

Column one contains asterisk.

t25 11 This format of the “t25" line allows all common
type 25 fields to be specified explicitly as a single
row. Virtually all user applications will find that
they can use this t25 format to represent their items

“t25" (quotes not needed)
Amount
Item Sequence Number
Routing (includes check digit)

Page 44 of 194

http://www.unisoftimaging.com/

X9Utilities User Guide X9Ware LLC

Line
Type

Field
Count

Usage Columns

completely and as the only line types within their
CSV file. It is our recommended format. This has
the extreme advantage that each item will be
represented by a single line (row) within the CSV
file, which is convenient since the CSV will then be
very easy to view in either a text editor or in a
spreadsheet tool.

The t25 fields are designed to include all of the
fields that are typically variable at the item level.
All information that is typically constant (record
level indicators, etc) are assigned from the
HeaderXml definition.

Front and back image file names must be fully
qualified and represent the location of those TIFF
image files within your file system. These files
names must typically be enclosed within double
quote marks since they may contain embedded
spaces.

Image Creator Routing and Image Creator Date can
be specified in this format at the item level, but
more typically will be omitted and instead deferred
to the HeaderXml definition. Image Creator
Routing identifies the entity who has physically
captured the image for this item (it is not the MICR
routing, which represents the payor institution). The
Image Creator Date indicates that the date that this
image was captured (converted from paper to
image). Typically, the combination of image creator
routing, image creator date, and item sequence
number represent a unique key that could be used to
identify and retrieve an item image from an image
archive.

This “t25" format can optionally insert BOFD (type
26) and secondary (type 28) endorsements that are
created from the HeaderXml parameters, when they
are required by your financial institution. As an
alternative to that simplified approach, you can also
explicitly provide the addenda records as individual
rows within your CSV file, after each record. You
would only want to do that when the endorsement

On-Us
Auxiliary On-Us
External Processing Code
Image Creator Routing
Image Creator Date
Front-Image file name
Back-Image file name

Page 45 of 194

X9Utilities User Guide X9Ware LLC

Line
Type

Field
Count

Usage Columns

record content is not constant across all items but is
instead variable on an item by item basis. In that
situation, the addendum record(s) would follow the
“t25"; the 7-field format of the “t25" format must
be used, with images on their own subsequent lines.

t25 12 This format of the “t25" line is exactly at the above
but includes a batch profile column which is the
12th column within each item row.

Batch profiles are used to allow multiple credits to
be created in a single x9 processing run. Use of this
facility creates a more complex x9 file, where items
are grouped by depositor, and where each deposit (a
credit offset by a series of checks) represents the
items for a specific depositor relationship. Our use
of batch profiles allows your item CSV file to
remain generic in nature, where you build a profile
which identifies specific information for each
depositor relationship (such as credit routing, credit
account number, etc).

Individual batch profiles must exist with the same
folder where your HeaderXml definition resides.
You then create a batch profile for each customer
that specifies their detailed credit information. For
example, you might create batch profiles named
customer1, customer2, customer3, etc. Each of
these batch profiles then contain detailed
information on the credit to be manufactured for a
specific customer.

The following fields can be optionally specified via
the batch profile definition. In reality, typical usage
would only specify routing, OnUs, and AuxOnUs,
with the other values being assigned directly from
HeaderXml and thus applied to all credits. The full
list of available fields are as follows:

• creditAccountName
• creditStructure
• creditPayorBankRouting
• creditMicrOnUs
• creditMicrAuxOnUs
• creditItemSequenceNumber

“t25" (quotes not needed)
Amount
Item Sequence Number
Routing (includes check digit)
On-Us
Auxiliary On-Us
External Processing Code
Image Creator Routing
Image Creator Date
Front-Image file name
Back-Image file name
batchProfileFileName

Use of our profiling
functionality is an advanced
topic.

Batch profiles are text
(property) files that must be
defined within the same folder
as where the HeaderXml file is
located.

The profile name should include
the file extension. For example,
“AcmeConstruction.txt" would
be a properly formatted batch
profile file name. The batch
profile file name can include
blanks; in that case they would
have to be quoted. A fully
qualified batch profile file name
is constructed from the
HeaderXml folder name and the
batch profile file name.

Please contact X9Ware for more

Page 46 of 194

X9Utilities User Guide X9Ware LLC

Line
Type

Field
Count

Usage Columns

• creditRecordUsageIndicator
• creditDocumentationTypeIndicator
• creditTypeOfAccount
• creditSourceOfWork
• creditDebitCreditIndicator
• creditReturnAcceptanceIndicator
• creditMicrValidIndicator
• creditBofdIndicator
• creditAddendumCount
• creditCorrectionIndicator
• creditArchiveTypeIndicator

A typical HeaderXml redirection would look like:

<creditPayorBankRouting>//creditPayorBan
kRouting</creditPayorBankRouting>/

<creditMicrOnUs>//creditMicrOnUs</credit
MicrOnUs>

<creditMicrAuxOnUs>//creditMicrAuxOnU
s</creditMicrAuxOnUs>

And then a customer batch profile would look like:

creditAccountName=Test Account
creditPayorBankRouting=555555550
creditMicrOnUs=112233445566/
creditMicrAuxOnUs=

information.

t25 7 This format of the “t25" line allows certain type 25
values to be specified explicitly (amount, item
sequence number, and the MICR line as individual
parsed fields) while the various indicators are
defaulted from the HeaderXml parameter file. Use
of this “t25" format can simplify your CSV
definition but requires that the same indicator
values are assigned to all items. This format
requires that “image" lines follow the “t25" line to
define the front and back images to be inserted into
the item.

“t25" (quotes not needed)
Amount
Item Sequence Number
Routing (includes check digit)
On-Us
Auxiliary On-Us
External Processing Code

t25 4 This format of the “t25" line allows certain type 25 “t25" (quotes not needed)

Page 47 of 194

X9Utilities User Guide X9Ware LLC

Line
Type

Field
Count

Usage Columns

values to be specified explicitly (amount, item
sequence number, and the MICR line as a single
scan line which will be subsequently parsed) while
the various indicators are defaulted from the
HeaderXml parameter file. You can use this option
when want to defer parsing of the MICR line to the
writer. Use of this “t25" format requires that the
same indicator values are assigned to all items. This
format requires that “image" lines follow the “t25"
line to define the front and back images to be
inserted into the item. In order to parse the MICR
line, values must be provided via HeaderXml for
the various separator characters:

micrTransitSymbol which defaults to 'A';
micrAmountSymbol which defaults to 'B';

micrOnUsSymbol which defaults to 'C';
micrDashSymbol which defaults to 'D'.

Amount
Item Sequence Number
MICR scan line

See the appendix for a full
definition of available
HeaderXml file content.

Type 25 records would normally be provided using the “t25" line. It has the benefits that certain
fields (such as the documentation type indicator) will be assigned from HeaderXml and will not
have to be hardwired into your application program. This not only simplifies things, but also
allows your application to more easily work with multiple endpoints when they require these
various indicators to be assigned differently. However, in some situations, you can need to take full
and explicit control of the type 25 record. In that case, this line layout can be used:

Line
Type

Field
Count

Usage Columns

25 15 The record type 25 definition allows you to provide
a complete list of all of the values that are defined
for the check detail record. Use of this format give
you total control over the data that is populated for
each item. This method is required when the
various record type 25 indicators are not constant
and can change from item to item.

Record Type
Auxiliary On-Us
External Processing Code
Routing (8 digits)
Routing Check Digit
On-Us
Item Amount
Item Sequence Number
Documentation Type Indicator
Return Acceptance Indicator
MICR Valid Indicator
BOFD Indicator
Addendum Count
Correction Indicator

Page 48 of 194

X9Utilities User Guide X9Ware LLC

Line
Type

Field
Count

Usage Columns

Archive Type Indicator

Type 26 records would normally be generated using the facilities provided via HeaderXml
definition. However, this may be inadequate since that approach assigns the same basic type 26
record to all items. There are times when certain fields must be dynamically populated for each
item (eg, deposit account number or payee name). In that case, this line layout can be used:

Line
Type

Field
Count

Usage Columns

t26 5 The “t26" line can provide an appropriate type 26
BOFD field values tor the current item. The “t26"
would immediately following the “t25".

“t26" (quotes not needed)
Return routing
Deposit account number
Deposit branch
Payee name

Return items can only be presented in the type 31 return record format. This is because the various
indicators (and especially the return reason) will most probably vary from item to item, hence the
format must provide the flexibility to change these values. The CSV layout is as follows:

Line
Type

Field
Count

Usage Columns

31 14 The record type 31 definition allows you to
provide a complete list of all of the values that
are defined for the check detail record. This
gives you total control over the data that is
populated for each item.

Record Type
Routing Number
Routing Number Check Digit
On-Us Return Record
Item Amount
Return Reason
Addendum Count
Documentation Type Indicator
Forward Bundle Date
ECE Institution Item Sequence
Number
External Processing Code
Return Notification Indicator
Return Archive Type Indicator
Reserved

Credits

Credits can become a complex topic, since credit definitions are essentially extensions to many of
the x9 standards. X9Utilities supports all common credit formats and can be further enhanced to

Page 49 of 194

X9Utilities User Guide X9Ware LLC

support additional formats if needed by your organization. An XML field defines which credit
format is to be generated, which allows the data to be generic. An XML field is also used to define
the relative location of where the credit is to be inserted within the x9 file that is being created.

Credits can be inserted into the generated x9 file using one of several techniques, subject to your
design and approach to file creation. Options are as follows:

 Approach Usage Number of
Credits?

Defined
In

Examples

Auto
insert

A single credit can be inserted
with the amount calculated
from the offsetting debits.
Various xml fields are used to
populate all required fields for
the chosen credit format.
Inserting the credit
automatically greatly
simplifies the generation of
the credit, since the content is
defined by xml parameters
and the credit amount is
calculated automatically from
the items.

When credits are inserted
automatically, they can then
have images optionally
attached when needed. The
image can be drawn
dynamically using the
creditImageDrawFront and
creditImageDrawBack
parameters. They can
alternatively be defined
externally (perhaps as a
generic proxy that is always
used) using the
creditImageProxyFront and
creditImageProxyBack
parameters.

One XML
only

This approach does not require any
account level information in the
CSV file. The credit amount is
calculated automatically from the
offsetting items. All parameters
needed to create the credit are
defined in HeaderXml. This does
mean that the created x9.37 file will
be for a single depositor.

Here is an example of the required
XML parameters:

creditFormat=t25
creditRecordLocation=a20

creditInsertedAutomatically=true
creditPayorBankRouting=123456780

creditMicrOnUs>1122334455/005
creditItemSequenceNumber=auto

creditDocumentationTypeIndicator=G
creditBofdIndicator=U

creditImageDrawFront=true
creditImageDrawBack=true

creditImageDrawMicrLine=true
creditAddToItemCount=true

creditAddToTotalAmount=false
creditAddToImageCount=true

Explicitly
defined
credit in
generic
format

A single credit or multi-credit
file can be created using credit
rows which are defined within
the items csv file. The credit
line includes all commonly
used credit fields. All other

Multiple CSV and
XML

credit,351420,44000001,555555550
,"12345678/",330000444,

There are 7 columns with content as
follows:

Page 50 of 194

X9Utilities User Guide X9Ware LLC

 Approach Usage Number of
Credits?

Defined
In

Examples

credit fields are populated
from xml.

The csv file should be
constructed as a series of
deposits, where each deposit is
a credit offset by checks. The
credit insertion point should
be defined as “any" to allow it
to be written in the order as
provided on the items csv file.

“credit"
amount
sequence number
routing
OnUs
AuxOnUs
EPC

Explicit
definition
using
specific
record
type and
fields

Credits can be provided on an
explicit basis as individual
rows within the items csv file.
These credits can be 61 or 62
record types, but can also be
type 25s that are
masquerading as credits. The
approach of using type 25s is
typically used by banks to
construct a deposit file that
can be accepted by their
capture system. It requires
some proprietary technique to
identify the credits, which is
typically a transaction code
that is embedded within the
MICR OnUs field.

Multiple CSV
only

The number of CSV columns is
variable number on the credit
format that is used:

61,2,44000001,,555555550,"12345
678/", 44000001,"G",0,,

Simple
single
credit

A simple credit can be
provided within the items csv
file using an explicitly
provided amount. This format
is typically used when there is
only a single credit and when
you want to provide the dollar
amount (you do not want it to
be automatically calculated).
All required credit fields are
populated from xml along
with the credit format and
insertion point.

One CSV and
XML

credit,351420

There are 2 columns with content as
follows:

“credit"
amount

Page 51 of 194

X9Utilities User Guide X9Ware LLC

Excessive Field Sizes

Write will set an exit status of 3 if there are any fields that have been assigned values that exceed
their maximum defined size, per the x9.37 standards. An example would be an attempt to assign
MICR OnUs with a 22 character value, or MICR AuxOnUs a 17 character value. In these
situations, the input values will be truncated and the error condition included in the system log,
along with the assigned exit status.

Credit Types

X9Utilities supports the following types of credits (please refer to the Addenda definitions of these
various record layouts):

Credit Type

X9Ware
Format
Number

Introduced by
X9.37

Specification

Record
Length Number of

Fields Description

61 “Metavante“ 001 N / A 80 13 This credit layout was defined
very early after the 2003
introduction of the X9.37
standard and is commonly used
by many financial institutions
given is acceptance throughout
the industry.

61 “DSTU“ 002 N / A 80 12 Our reference to this credit
format as “DSTU" is a
misnomer, only because it was
never officially accepted as part
of the DSTU standard. However,
it was defined at virtually the
same time as the 2003 DSTU
standard itself, and used by many
financial institutions. Our
opinion is that it is not accepted
as widely as the Metavante
layout.

61 “X9.100-180“ 003 x9.100.180-
2006

82 12 This credit layout was introduced
with the x9.100-180 standard in
2006. Note that the record length
is 82 and not 80, so it is very
different from most other credit
layouts. It is used infrequently
given that the x9.100-180
standard was generally rejected
by most banks and processors.

62 000 x9.100-187-
2013

100 12 This credit layout was introduced
with the x9.100-187-2013

Page 52 of 194

X9Utilities User Guide X9Ware LLC

Credit Type

X9Ware
Format
Number

Introduced by
X9.37

Specification

Record
Length Number of

Fields Description

standard to address the lack of a
credit standard. Note that the
record length is 100 and not 80,
so it is very different from most
other credit layouts. This credit
format has the advantage that
x9.100-187-2013 explicitly
defines the impact of credits on
trailer record content.

Credit Images

Front and back images can be optionally attached to inserted credits. Many financial institutions do
not require credit images to be attached to type 61 or type 62 credits. However, images are often
needed when the credit is inserted as a type 25 record.

Several techniques can be used to insert the credit images. All of these allow either one or two
images to be attached to the credit. When one image is attached, it will always be assumed as the
front image. When two images are attached, they will be the front image followed by the back
image. Alternatives are as follows:

Approach Applicability Description

Proxy Images Used when credits are inserted
automatically.

Proxy images can be inserted using the
creditImageProxyFront and
creditImageProxyBack parameters. These
are external images will be inserted
exactly as they are defined.

Drawn Images Used when credits are inserted
automatically.

Dynamically drawn images can be
inserted using the creditImageDrawFront
and creditImageDrawBack parameters.
The drawn front image is a very basic
deposit slip that can contain an optional
MICR line and will then include the
following information: bank name, date,
originator name, account name, account
number, credit amount, and item count.

Inserted Images Used when credits are included in
the csv file (as “61", “62", “credit",
or “25" record types). This
approach must be used when the
output x9 file will contain multiple
credits, and hence they cannot be

Item level images can be inserted using
the inline “imageFolder" and “image"
directives, which immediately follow each
csv credit record.

Page 53 of 194

X9Utilities User Guide X9Ware LLC

inserted automatically by the writer.

Custom Type 61 Credit Formats

Custom credits can be created when the standard type 61 formats are determined to be insufficient.
The need for this procedure would be considered extremely unusual. We instead request that you
contact X9Ware to get any required type 61 credit formats added to our standard x9 rules. If
absolutely needed, a procedure to add an unusual type 61 credit format would be as follows:

• The approach is to create a new x9rules definition, which will have the required type 61
credit format. This modified rules definition will replace on of our standard definitions.

• Select the x9rules definition to be used. These base xml documents are stored in / rules /
x9rules /. For example, this might be xml document x9rules_x9.100-187.xml.

• Backup the selected xml document to a safe location.
• Using an xml editor, locate the type 61 records that are present. Type 61 record format zero

(0) will be retained. Remove all credit formats other than DSTU (format type 2).
• The result is that there is now only one credit format in this x9rules set (other than the

generic format zero).
• Now apply updates to this type 61 format 002 definition to mimic the required fields. There

are several key requirements during these changes. First is that the field names must be
retained, allowing them to be logically identified. Both field lengths and the actual order of
the fields can be changed. However, the final number of fields must still be twelve (12)
when you are completed. Depending on your requirements, this may imply that several
fields be combined into a reserved title. You will need to be a bit creative to ensure that the
field count requirement is met.

• Double check that all of your xml field numbers are sequential (1, 2, 3, etc) and that the
positions and lengths are all correct.

• Once these updates are completed, use an xml editor to ensure that xml tags are still valid.
• Your new x9rules with your custom type 61 credit definition is now ready for testing.

Item Images

Image information is provided within the CSV file using several unique line types.

Line Type Column Content Description

Image folder
definition

1 “imageFolder" The image folder line is optional and can be used to
provide the root directory of your image folder. This
facility is not compatible with batch profiles.

You would typically specify parameter a single time
within your csv file (on the second input line number
and immediately after the header parameter) but can
instead be repeated whenever the image folder
changes (for example, at the bundle level). This
image folder is then be used to construct the item
level image names.

Page 54 of 194

X9Utilities User Guide X9Ware LLC

Line Type Column Content Description

2 Image folder file
name

The folder name should be specified as a quoted
string using forward slash separators. Backslashes
are not recommended since they are part of an
ESCAPE character sequence and can be
unexpectedly ignored. The folder name should not
end with the separator character. We highly
recommend enclosing the input folder within quote “
marks, which are mandatory when the folder name
contain embedded blanks.

Image file
definition

1 “image" or
“image2"

The “image" line defines a front or back image to be
attached to the current item. Two “image" lines
would typically always be defined for each item, per
image exchange rules. The first image line
represents the front side image and the second image
line represents the back-side image. These two lines
must follow their associated type 25, 31, 61, or 62
records; there may be user defined type 26 or type
28 records that precede these image lines.

As an alternative, the “image2" line defines a multi-
page tiff image that contains the front and back
images as two pages, within a single tiff image.
When “image2" is used, the multi-page image will
be internally separated into two separate images that
are then redrawn into two images, using x9.100-181
standards, The original tiff tags from the multi-page
image are discarded and new tiff tags are assigned.

If a paid stamp is being applied to an image, then it
must appear before its associated image line.

2 Image file name
or base64 image
string

The image file name should be specified as a quoted
string using forward slash file separators, enclosed
within quote marks. Please note that backward slash
should not be used since it is processed as part of an
ESCAPE character sequence and will be ignored.

The image can also be provided as a hexadecimal
base64 string. In this case, the image descriptor is
provided using a prefix of base64=, which identifies
the image as a base64 string (and not a file name).
This approach allows the CSV to be completely self
defined, since it will not contain file name
references. This is advantageous when the CSV file
is being created by a pre-processor and then run

Page 55 of 194

X9Utilities User Guide X9Ware LLC

Line Type Column Content Description

through X9Utilities at a later point in time.

3 Image creator
routing number

Identifies the image creator routing number and is
populated in field 50.03. If this value is not
specified, it will first be defaulted first from xml
field <itemImageCreatorRouting> and then secondly
from field <cashLetterEceInstitutionRouting>.

4 Image creator
date

Identifies the image creator date and is populated in
field 50.04. If this value is not specified, it is
defaulted from xml field <createDate>.

If the provided image is in TIFF format, then every attempt will be made to use that image exactly
as presented in the created type 52 record. The TIFF image will be loaded and inspected. If it is
determined to be a valid TIFF image that meets x9.100-181 image exchange standards, then the
TIFF byte array will be inserted as provided into the type 52 image record. If a TIFF image is
presented, we recommend that you ensure that it is already in x9.100-181 compliant format.

By default, image re-size and re-scale are not enabled within X9Utilities. These actions are
purposefully disabled (by default) for several reasons. First is that these operations are CPU
intensive and not recommended for any high-volume processing situation. It is far better to do this
elsewhere, outside of your file delivery path, than doing it within the actual x9 file creation process
where the results cannot be reviewed. Second is that image conversion is not an exact science. This
conversion can provide unexpected results, and especially when there are color or gray scale
translations needed based on how the image was captured. As a result, these capabilities will have
to be enabled on the command line to become effective.

Images can be presented in other formats (eg, PNG, JPG, or GIF) but this is not recommended for
these very same reasons. If the image must be converted to TIFF, there is also an attempt to
determine the original DPI and then re-scale the image to x9.100-181 exchange standards as
needed. The ability to determine the original DPI is dependent on the encoding image format and
the embedded meta-data.

Paid Stamp

Virtual paid stamps are most typically applied by the scanner during the capture process. They can
also be applied by many financial institutions to the file after it has been transmitted to them, as
part of their image capture system. If both of these options are not available to you, then the virtual
paid stamp can be applied to the back side TIFF image by X9Utilities during the x9.37 file creation
process. This facility modifies incoming images by dynamically drawing a paid stamp using the
provided text and font sizes. Be aware that drawing paid stamps will add substantially to run time,
since every back side image must be redrawn. The new TIFF image will be written at the same
DPI as the input image. The created image will comply with the x9.100-181 standard, but the
actual tiff tags which are present may be different than those present on the original image.

Page 56 of 194

X9Utilities User Guide X9Ware LLC

The incoming TIFF image must be in valid format to allow it to be parsed and updated. If a failure
occurs during this process, there will be associated errors in the system log, and the original image
will be written (which would not include the paid stamp).

The most typical usage would be to provide a single paid stamp as the first line within your csv
file. This paid stamp definition will then be applied to all items. Alternatively, there can be
multiple paid stamp lines within the csv file. In this situation, the paid stamp will be applied to
subsequent items until another paid stamp is encountered. Use of multiple paid stamps is not
compatible with batch profiles, since csv lines would be reordered by credit account.

The paid stamp definition consists of four parts:

• The title, which will is drawn on the paid stamp borders.
• A variable number of heading lines, which will be drawn in a larger font.
• An empty (blank) string, which separates the heading lines from the text lines.
• A variable number of text lines, which will be drawn in a smaller font.

Text will be drawn using the arial font. Font size can be set separately for the title, heading, and
text areas. Each font size can have an optional trailing “b" to indicate that it should be bold.

Paid stamp example:

paidStamp,11,10,10,1.800,"Company Name","For Deposit Only","Bank
Name","Other","Instructions","As Needed"

Paid stamp example that draws as a filled box:

paidStamp,11,10,10,1.800,"box", "fill", "Company Name","For Deposit Only","Bank
Name","Other","Instructions","As Needed"

Paid stamp example that draws as a filled area but does not have an enclosing box:

paidStamp,11,10,10,1.800,"nobox", "fill", "Company Name","For Deposit Only","Bank
Name","Other","Instructions","As Needed"

Line Type Field
Number

Usage Usage

Paid stamp
definition

1 “paidStamp" to be applied. When using
batch profiles with creditStructure with
bundledCredits, it is important the paid
stamp be repeated for every item. This is
because the csv input must be grouped and
reordered.

Paid stamps are optional
and are applied to one ore
more items.

Title font size 2 Font size with optional trailing “b" (to
indicate bold).

Example is “12".

Page 57 of 194

X9Utilities User Guide X9Ware LLC

Line Type Field
Number

Usage Usage

Heading font
size

3 Font size with optional trailing “b" (to
indicate bold).

Example is “12".

Text font size 4 Font size with optional trailing “b" (to
indicate bold).

Example is “10".

Location 5 Location of paid stamp from the right edge
of the back side image.

Suggestion is to use 1.80
inches.

Box variable Optional string “box" or “nobox" which
indicates if a rectangular box is to be drawn
around the paid stamp.

Default is “box".

Fill Variable Optional string “fill" or “nofill" which
indicates if the paid stamp area is to be filled
prior to drawing. When the paid stamp is
filled, any information in that area will be
obliterated with white pixels prior to the
drawing of the paid stamp lines.

Default is “nofill".

Title text variable Defines the title which is drawn just inside
of the top and bottom border lines.

Typically identifies the
issuer.

Heading text variable One or more heading lines. Typically includes “For
Deposit Only".

Separator variable Empty (blank) line which is a separator
between the heading lines and the text lines.

Additional text variable One or more text lines. Additional text lines to
describe the item such as
payment instructions,
store location, etc,

Batch Profiles

The use of batch profiles allows the csv input stream to be utilized in many interesting ways. Batch
profiles should be considered when you are using the writer to create multiple deposits to varying
accounts.

When batch profiles are not being used, the csv input is processed in exactly the same order as it is
presented to the writer. However, when batch profiles are being used, the csv input is reorganized
(grouped) based on the assigned batch profile name. For example, suppose you have 100 items that
are being deposited to 4 different accounts. Batch profiles allows the 100 items to be reorganized
by depositor into 4 separate deposits. All of this is done by the writer, where your responsibility is
to assign the correct batch profile name to each item.

There are many benefits to using batch profiles, since the writer will:

Page 58 of 194

X9Utilities User Guide X9Ware LLC

• Reorganize the input stream into individual deposits using the assigned profile name.
• Calculate the amount for each deposit from the associated (attached) items.
• Construct a deposit ticket using the appropriate MICR fields for the specific depositor.
• Draw a unique deposit ticket for each credit using their account name.

All of this can be done without using batch profiles. However, it is much more difficult since your
application must sort the csv file by depositor, calculate the deposit amounts, and insert “credit"
lines into the csv stream. This is possible but obviously more complex.

The easiest way to utilize batch profiles is to incorporate them into your “t25" item line. This
works well when creating files using the “t25" format where each item (in its totality) is
represented by a single row. However, other more complex writer implementations may require
that the batch profile be defined independently. Examples of those more complex flows might be:

Possible flow: batchProfile
one or more t25’s that include image columns
batchProfile
one or more t25’s that include image columns
end

Possible flow: batchProfile
paidStamp
one or more t25’s that include image columns
batchProfile
paidStamp
one or more t25’s that include image columns
end

Possible flow: batchProfile
25 or t25
paidStamp
image or image2
[repeat item groups as necessary]
end

The format of the standalone “batchProfile" line is as follows:

Line Type Field Count Usage Columns

batchProfile 2 Specify the batch profile to be assigned to
the subsequent csv lines. This assignment
continues until the next batch profile line is
encountered.

Batch profiles are text (property) files that
must be defined within the same folder as
where the HeaderXml file is located.

“batchProfile" (quotes
not needed)

batch profile file name

Page 59 of 194

X9Utilities User Guide X9Ware LLC

Line Type Field Count Usage Columns

The profile name should include the file
extension. For example,
“AcmeConstruction.txt" would be a
properly formatted batch profile file name.
The batch profile file name can include
blanks; in that case they would have to be
quoted. A fully qualified batch profile file
name is constructed from the HeaderXml
folder name and the batch profile file name.

Please contact X9Ware for more
information.

New Bundle Statement

The “newBundle" line is used to indicate that the next item should begin in a new bundle
regardless of the current bundle item count. This line can appear anywhere in your CSV input file
and typically might precede a credit when you specifically want that credit to begin in a new
bundle.

System Log Correlation

The “logger" facility is optional and allows user defined text to be written directly to the system
log, for correlation of the system log back to application specific events. In order to use these
facilities, it may be useful to also redirect the system log to an alternative folder location, using the
“-log" command line switch. User text can be inserted into the system log in several ways. First is
by using either the “-logger:" command line switch, for example: -logger:"run 513387". Second is
by including logging lines within the incoming csv file, or example: logger,"deposit 49923814".

END Statement

The “end" line must be the last line on your input file and logically indicates end of file. The “end"
line is mandatory and must always be present. Write will abort if the end line is not present or is
not the last line within your input file.

Sample Items File
t25,10002,44000001,087770706,"29602722/5526",,,,,"c:pathToFrontImage",“c:pathToBackImage"
t25,10004,44000002,097770592,"60333044/5587",,,,,"c:pathToFrontImage",“c:pathToBackImage"
t25,10006,44000003,077770392,"29343913/5178",,,,,"c:pathToFrontImage",“c:pathToBackImage"

end

Page 60 of 194

X9Utilities User Guide X9Ware LLC

Sample Items File with a Credit

When you have needed a single credit to offset checks within a deposit, you would normally define
that in the HeaderXml file. That definition allows you to specify the type of credit to be inserted,
where the credit should be positioned within the file, how the credit impacts trailer record counts
and amounts, and also allows you to indicate that a deposit slip should be drawn and attached to
the credit in lieu of captured images. All of these advanced HeaderXml capabilities will typically
mean that you do not need to include the credit on your items CSV file but would instead just let
the writer create the credit for you. However, you can also take full manual control of the credit
and insert it into the file at a position of your choice, and with specific information and attached
images. This also allows you to optionally specify the image creator routing and capture date on
the created image records. You would do this as follows:

credit,20006,44000000,555555550,000000029292/,,
image,"c:pathToFrontImage"
image,"c:pathToBackImage"
t25,10002,44000001,087770706,"29602722/5526",,,,,"c:pathToFrontImage",“c:pathToBackImage"
t25,10004,44000002,077770392,"29343913/5178",,,,,"c:pathToFrontImage",“c:pathToBackImage"
end

Sample Items File with User Defined 26/28 Records

Sometimes fields within the 26/28 addenda records attached to each item are not constant, but
instead must vary from item to item. In this situation, you cannot define your type26/28 records
within HeaderXml, since that would attach the same constant data.

When this more complex scenario is needed, you will have to take control of the type 26 (and
possible) 28 records that are attached to each item. This approach would allow you to explicitly
define the type 26/28 records to be written for each items, and even to have multiple type 26
BOFD records. This is needed to allow the type 26/28 records to be written after the item record
and before the type 50/52 image records.

One way to do this is to use the T25 record layout using the 7-field format (without the image
names). You can then provide CSV lines for any needed type 26 or type 28 records, followed by
the image lines. When using his approach, the image lines can be written with two fields (with just
the image file name) or with four fields (which would include the image creator routing and date).

With this implementation, the HeaderXml file will not be completely populated from the bofd,
secd, secd2, or secd3 series of fields. These XML fields define type 26/28 addenda records, within
the HeaderXml file.

You will have to provide a value for the number of attached addenda records, which is needed for
the type 25 record:

<itemAddendumCount>1</itemAddendumCount>

If the number of type 26/28 addenda records will vary by item, then you will need to use a 25 line
that fully defines your type 25 item record (instead of the t25 alternative).

Page 61 of 194

X9Utilities User Guide X9Ware LLC

These type 26/28 records can be inserted using explicit field values. In order to simply things a bit,
we also provide a T26 line that allows you to provide key type 26 fields via the CSV file while still
deferring basic indicators (etc) to Headerml. An example CSV file that uses a 7-field T25 and a
unique T26 addenda record for each item would be as follows:

t25,10002,44000001,087770706,"29602722/5526",,
t26,123456780,12345,001,"Mary Smith"
image,"C:/Users/X9Ware5/Documents/x9_assist/files_Utilities/Test file with 2
checks_IMAGES/Bundle_000003/Image_000004_amount_10002_front.tif"
image,"C:/Users/X9Ware5/Documents/x9_assist/files_Utilities/Test file with 2
checks_IMAGES/Bundle_000003/Image_000004_amount_10002_back.tif"
t25,10004,44000002,097770592,"60666044/5587",,
t26,123456780,12345,001,"John Smith"
image,"C:/Users/X9Ware5/Documents/x9_assist/files_Utilities/Test file with 2
checks_IMAGES/Bundle_000003/Image_000010_amount_10004_front.tif"
image,"C:/Users/X9Ware5/Documents/x9_assist/files_Utilities/Test file with 2
checks_IMAGES/Bundle_000003/Image_000010_amount_10004_back.tif"
end

Page 62 of 194

X9Utilities User Guide X9Ware LLC

Drawn Images and Remotely Created Checks (RCC)Drawn Images and Remotely Created Checks (RCC)

X9Utilities can dynamically draw images which are attached to items. This image drawing process
typically applies to one of several flows:

• First is Remotely Created Checks (RCC), where production items are being created.
• Second is Test Center automation, where test items are being created.
• Third is usage to create electronic adjustment files, which can be targeted for production

environments.

What is a Remotely Created Check (RCC)?

A check that is not created by the paying bank and that does not bear a signature applied, or
purported to be applied, by the person on whose account the check is drawn. The FRB defines a
“remotely created check" as a check that is drawn on a customer account at a bank, is created by
the payee, and does not bear a signature in the format agreed to by the paying bank and the
customer.

RCCs are electronic items where the check images are dynamically created (drawn) and are not
captured. Originated RCCs are debits to a specific customer bank account and require
authorization of the account owner. RCCs do not bear the signature of account owner but instead
include the account holder name within the image itself. The account holder can authorize the
creation of the RCC in various means including in-person or telephone. Complete and accurate
MICR line information for the customer account must be provided. RCCs are often created as an
alternative to ACH by credit card companies or telemarketers. A benefit of RCCs are that they are
cleared through the check image clearing networks and RCCs are processed through the check
clearing networks and are governed by rules including the Uniform Commercial Code (UCC) and
the Expedited Funds Availability Act (Regulation CC). Remotely Created Checks have the
potential to be used in situations where ACH may not be available in a specific clearing scenario.

RCCs are similar to their check counterparts. They embody a paper instrument that contains an
unconditional written order, instructing a drawee bank (paying bank) to make payment to the
order of a designated payee and are processed through the banking system. They serve a useful
business purpose in a diverse market, for applications such as Telephone Marketing, Bill
Payments, Loan Repayments, Recurring Insurance Payments, and Internet payments.

FED Position as of January 2019 -- Due Diligence Required

Per information from RemoteDepositCapture.com, the Federal Reserve appears to have closed the
door on widespread adoption of ECIs, despite widespread industry support. The Fed adopted an
amendment to Regulation J in November 2018 (the rule set that governs the collection of checks
and other items through Reserve Banks) that effectively bans financial institutions from clearing
electronically-created items (ECIs) through the Reserve Bank System which became effective
January 1, 2019.

The Fed in explaining its decision said ECIs do not fit Uniform Commercial Code (UCC) and

Page 63 of 194

X9Utilities User Guide X9Ware LLC

regulatory definitions of checks since they never exist in paper form. It also said that its decision to
ban ECIs from the Reserve Bank System would not stop banks from agreeing to clear ECIs
between one another. However, since a significant share of checks clear through the Reserve Bank
System – 45 percent on the forward collection side and 68 percent of returns, according to the
Fed’s data – most experts expect FIs will not encourage business clients to use ECIs in lieu of
issuing paper checks.

RCC Items Should be Assigned EPC “6"

As defined in X9 Standard X9.100-160-2014, the EPC is a MICR digit that conveys special
information regarding the correct handling or routing of a check or check data to financial
institutions and other processors The EPC field is MICR field 6, position 44 on the MICR line,
and is located to the immediate left of the Routing number.

A new EPC code of “6" was added to the latest revision of the X9 Standard Magnetic Ink Printing
(MICR) X9.100-160-2014 Part 2. Per this standard, the EPC code of “6" shall be assigned when
RCC items are created by their originator. This new code, when used appropriately, will create a
mechanism for identifying and monitoring these items.

Our RCC Support Leverages “-write" Functionality

The overall process to create to create these image files is very similar to creating any other x9.37
file. The only significant difference is that images are dynamically drawn and are not loaded from
externally supplied image folders. When drawing images, the “imageFolder" and “image"
directives typically used by “write" are not applicable since images will not be loaded from
external TIFF files. Several new directives are added in their place which provide the information
that is required to draw the front and back item images.

All other write functionality remains in place and can be leveraged by RCC file creation. This is a
tremendous advantage since this common approach allows XML parameters to be provided which
control all aspects of the x9.37 file creation process.

Using Image Templates

X9Utilities includes several image templates which can be either used directly or as the basis to
build your own customized templates. These standard templates are:

• “rcc1" which is a basic RCC template.
• “rcc2" which is a more complex RCC template that supports the insertion of additional text

fields and demonstrates the full range of all capabilities.
• “credit" which is a generic credit document that might be used for internal adjustments.
• “debit" which is a generic credit document that might be used for internal adjustments.
• “testDoc1" which is a test document and is clearly marked as such.

Most usage of our RCC functionality will not want to use our predefined templates but will instead
want to define their own custom formats.

Page 64 of 194

X9Utilities User Guide X9Ware LLC

• You may have one or more RCC templates
• Each X9Utilies processing run may utilize one more templates within the run
• Templates allow you to position text at the appropriate location based on your design
• Text will be drawn using the font and size of your choosing

Drawing Images

X9Utilities “-write" has the additional capability to dynamically draw front and back images as an
alternative to loading them from external image folder(s). Images are drawn from a front image
template of your design that is used as a background to construct each individual image. Templates
are typically drawn using common tools such as GIMP, Paint, or Photoshop and are saved in a
format such as PNG to our internally defined image folder.

Each template consists of a series of internally defined fields which can be placed anywhere within
the image based on your template design. These fields can also be drawn with a font and font size
of your choosing. These definitions are applied to the “templates.xml" configuration file which is
dynamically loaded by the SDK during startup.

Back side images can be created in several manners. This can be a template image of your design,
where a variable number endorsement lines are then added. This can alternatively be an image that
includes a paid stamp, a variable number of endorsement text lines, and an optional group of “sign
here" lines that simulate that area on the back side of a typical check. Finally, for testing
environment, the paid stamp can be replaced with a document identifier which can be used to
display the internal document type for this item (GL, Cash Ticket, Batch Ticket, etc).

 RCC creation has two new CSV line types that are unique to image drawing:

Line Type Column Content Description

Image Creator
Definition

1 “imageCreator" Sets values for image creator date and time.

2 Image creator
routing number

Identifies the image creator routing number and
is populated in field 50.03. If this value is not
specified, it will first be defaulted first from field
“itemImageCreatorRouting" and then secondly
from field “cashLetterEceInstitutionRouting".

3 Image creator date Identifies the image creator date and is populated
in field 50.04. If this value is not specified, it is
defaulted from field “createDate".

Draw image
definition

1 “drawImages" Identifies this as a draw images row which must
be present for each item.

2 Front image
template name

Identifies the template name to be used for
drawing. This template must be defined in the
“images" folder and then also must have a
definition in “templates.xml" which describes the

Page 65 of 194

X9Utilities User Guide X9Ware LLC

Line Type Column Content Description

coordinates of specific fields within the image.

3 Back image
template name

Identifies the back-side image to be used; this is
optional and will be automatically drawn when
omitted. When this image is provided, it should
have the same physical size as the front image. In
addition to the template name, several special
values are also available:

• “blank" will insert an empty image.
• “/identifier" will draw the supplied text on

the back side image as document
identification. For example “/GL Ticket"
will draw and identify the item as GL.

• “/$identifier" will draw the supplied text
on the back side image as document
identification, and also includes a signing
block on the far right side of the image.

• “/#" will draw a paid endorsement stamp
on the back side image. Sign here text can
be included by using “/$#". The
endorsement stamp includes a series of
text fields that are shown within the paid
stamp. The paid stamp definition is
completely variable and allows title,
heading, and text lines to be applied. See
the separately documented information on
the paid stamp (within this user guide) for
more on this format.

4 Item identifier Front side image field.

5 Date written Front side image field.

6 Address line 1 Front side image field.

7 Address line 2 Front side image field.

8 Address line 3 Front side image field.

9 Address line 4 Front side image field.

10 Address line 5 Front side image field.

11 Payee line 1 Front side image field.

12 Payee line 2 Front side image field.

13 Payee line 3 Front side image field.

14 Memo line Front side image field.

15 Bank name Front side image field.

Page 66 of 194

X9Utilities User Guide X9Ware LLC

Line Type Column Content Description

16 Signature line Front side image field.

Lastly One or more
endorsement
lines, each
presented in
subsequent
columns.

Back side image. Each text field is prefixed with
“/E/" for identification. For example, an example
might be “/E/Remote Deposit ISN 8849243".
These text lines are inserted into the image and
can be used for a variety of application specific
purposes. For production files, they can be used
as a multi-line endorsement. For test files, they
can contain alternate information such as
expected results or special instructions.

RCC files will not import images to be attached to each item, but must instead draw them. Most
RCC applications will only create debits, but this facility is capable of creating both debits and
credits. A n example of a CSV which dynamically creates RCC images is as follows:

imageCreator,123456780,20210401
credit,20006,44000001,555555550,"1234567890123/",123456,
drawImages,credit,"/$","123A55001",20140806,"John Doe","1234 Main Circle Dr","Springfield, St
88888-9999",,,"Payee line 1","Payee line 2","Payee line 3","Memo line here","Bank name
here","Signature line here","/E/Endorsement line 1","/E/Endorsement line 2"
t25,10002,44000002,087770706,29602722/5526,,6
drawImages,debit,"/$","123A55001",20140806,"John Doe","1234 Main Circle Dr","Springfield, St
88888-9999",,,"Payee line 1","Payee line 2","Payee line 3","Memo line here","Bank name
here","Signature line here","/E/Endorsement line 1","/E/Endorsement line 2"
t25,10004,44000003,087770706,29602744/5527,,6
drawImages,debit,"/$","123A55002",20140806,"John Doe","23456 Main Circle Dr","Springfield, St
88888-9999",,,"Payee line 1","Payee line 2","Payee line 3","Memo line here","Bank name
here","Signature line here","/E/Endorsement line 1","/E/Endorsement line 2"
end

X9Utilities is packaged with the “x9writerRCCtest.bat" batch file which demonstrates the creation
of an output RCC file. This sample batch file is as follows:

@echo off

: RCC demonstration.
: A sample CSV file defines the items to be created.
: The RCC template can be customized per customer requirements using a paint program.
: Note that this batch script assumes that X9Assist has been installed as the viewer.

set "launchFolder=c:/Program Files (x86)/X9Ware LLC"
set "assistFolder=%launchFolder%/X9Assist Rx.xx"
set "utilitiesFolder=%launchFolder%/X9Utilities Rx.xx"
set "headerXml=%utilitiesFolder%/samples/writer/x9headers.xml"
set "csvInput=%utilitiesFolder%/samples/writer/testFile2ChecksRCC.csv"

: This assignment must be changed to write the output file to the appropriate user folder.

set "x9Output=c:/users/X9Ware5/documents/testFile2ChecksRCC.x9"

: Run x9utilities using the "-write" function to create a new x9 file from an input csv.

cd "%utilitiesFolder%"

Page 67 of 194

X9Utilities User Guide X9Ware LLC

x9util -write -j -l -xml:"%headerXml%" "%csvInput%" "%x9Output%"

: Launch the created x9 file in our viewer as the final step of this demonstration.

cd "%assistFolder%"
x9assist "%x9Output%"

pause

exit /b

Page 68 of 194

X9Utilities User Guide X9Ware LLC

CreateCreate

Create is an advanced tool that can be used to easily construct new x9 output files using a
combination of X9Utilities and our E13B-OCR recognition products. Create is designed to be used
when you have captured the front and back images for each item (eg, through a scanner), but you
do not have associated E13B MICR lines from the front images. In this situation, E13B MICR
lines must be obtained through OCR recognition from the MICR band area at the bottom of the
front side check image. This OCR process is required since the MICR data fields must be
populated into each item within the X9.37 file that is being constructed.

E13B-OCR recognition is often provided by the firmware embedded within your document
scanner. When this feature is available, the scanner can read the E13B scan line from at the bottom
of each check and provide the MICR line to you via their API. In this way, you do not need a
separate E13B recognition tool, since it is integral to your scanner process. Our recommendation is
to always use the E13B scan line that can be obtained from scanner, whenever that is option is
available to you. There are several reasons why this is considered to be the best overall approach,
since it:

• Allows you to leverage the scanner vendor for this process, instead of complicating your
environment and potentially adding another vendor to your workflow.

• Provides a proven and reliable approach, since this facility will most probably be used by a
majority of their customers.

• Obtains the MICR line from the scanning device using the same API that will already be
implemented to obtain the document images.

• Provides a no-cost solution, since vendors most typically always provide this functionality
as a part of their bundled solution.

• Represents the most efficient way to obtain the E13B MICR line. OCR recognition is a
CPU expensive function, so doing this in your scanner is always the best solution.

If you do not have a scanning solution that provides an OCR MICR line scanner, or if you do not
want to use that embedded capability within your scanner, there are other vendor OCR solutions
you might consider. For example:

• Parascript
• Mitek A2iA

Given this background and these alternatives, X9Ware offers our own E13B-OCR recognition
solution, which is the X9Ware E13B-OCR product. This product can be licensed on a standalone
basis, but is also offered as an extension to X9Utilities. In this scenario, X9Utilities and X9Ware
E13B-OCR are fully integrated to provide an optimized flow that can build ICL files using
minimal check formation. Specifically, for each item, you will only need the following fields:

• Amount
• Item sequence number
• Front side check image

Page 69 of 194

X9Utilities User Guide X9Ware LLC

• Back side check image

Image conversion

The check images will ideally already be in TIFF format and x9.100-181 complaint, which means
that the are suitable for x9.37 image exchange. If that is not the case, then our create function has
the ability to resize and/or repair the images to ensure x9.100-181 compliance. These functions are
turned off on a default basis. You must enable “-imageResizeEnabled" and “-imageRepairEnabled"
if you want to use these image capabilities.

Although the images that are input to create are ideally in TIFF format, create will also
automatically convert images to TIFF as needed from other formats such as PNG, JPG, GIF, or
BMP. We nonetheless highly suggest that you avoid using our conversion facilities, since it adds
substantially to runtime. It is important your image archive contains the check images as you are
sending them to your processor or financial institution. For this reason, the best solution is to
convert images elsewhere within your workflow, add them to your internal image archive, and then
send the resulting TIFF images into the create process.

Create is built on top of our -write function and thus implements all of the same command line
switches that are provided by the writer. Essentially, create is a pre-processor for write, where the
csv output file that is manufactured by create will be provided as input to write. All of this is
automatically provided by X9Utilities; you can view -create as a “super" version of -write, with the
additional capability of obtaining the MICR line through E13B-OCR recognition.

E13B-Threading

As with all OCR processing, our E13B-OCR recognition process is extremely CPU intensive. As
part of optimization, recognition will be performed from a series of background threads that are
run in parallel, with the intention to maximum performance and minimize overall run time.

The “-threads" parameter can be optionally provided to influence the number of background
threads that will be used. For example, you can provide a switch value of “-threads:4" to indicate
that four (4) threads should be used for recognition processing. When this parameter is not
provided, it will default to a reasonable setting based on the number of processors that are
available on your system.

CSV conversion of i25 to t25

Create reads an input csv file and applies E13B-OCR recognition against the front-side images to
create an output csv file that is formatted specifically for -write processing. The input csv identifies
items as “i25" lines, while the output csv identifies items at “t25" lines. You can essentially view
the create function as a translator that uses E13B-OCR to obtain the MICR line for each item and
then convert apply the MICR line to each “i25" lines to manufacture “t25" lines. Here are the
important things to know about the process:

• All “i25" rows within the input csv will be converted to “t25" rows.

Page 70 of 194

X9Utilities User Guide X9Ware LLC

• An optional “imageFolder" line can be provided as often as needed, to identify a path for
those images that immediately follow the “imageFolder" row. The “imageFolder" can
provide the full path to the images within the file system, or can instead provide only a high
level path where the image names then provide the lower level path to the image.

• Using “imageFolder" can sometimes be helpful, since it eliminates the need to put a fully
qualified file name on each “i25" row. Create uses the “imageFolder" rows to formulated
the image file names. These “imageFolder" rows are critical to Create but will not be
needed by the writer, since Create passes on fully qualified file names. Because of that,
Create drops the “imageFolder" rows and does not pass them on to the writer.

• Other than these translations, Create copies all csv rows from input-to-output.
• Create ensures that the output csv is written in the same sequence as they were encountered

on input, despite the background thread processing that is being used internally to optimize
the process.

All Writer functionality can be leveraged

Because create ensures that the output csv file is written in the same order as the input csv, you can
leverage all functionality that provided by x9utilities -write. This includes:

• Use of the headerXml file to define all x9.37 attributes. The headerXml file name is
provided either via the command line or provided on the first row of the input csv.

• Automated insertion of an offsetting ICL credit, based on headerXml parameters.
• Addenda attachment either via headerXml parameters or embedded type 26 and 28 records

within the input csv.
• Paid stamps that can be applied to the back-side check images.
• Batch profiles to automatically group items and generate customer level credits.
• Output x9.37 file rename from temp to final on successful completion.
• Summary file(s) of the output x9.37 file that are automatically created on completion,

subject to your command line switches (-j, -x, -t).
• Final exit status per -write documentation.

ImageFolder and Base64 image strings

An image folder can be optionally provided on the -create command line. When the image folder is
provided, all images will be written to this folder and the output “t52" lines will be redirected to
this target folder. Create has this facility to save all processed images, since input images can be
repaired, resized, or even converted from other image formats as part of file generation. In these
situations, you we recommend that you store these images in your archive, along with your
originally captured images, as part of your audit trail.

When the image folder is omitted from the command line, images within the intermediate csv file
that is constructed and passed to the ICL writer will be populated as base64 strings and not as fully
qualified file names. By passing them as base64 strings, they are internally defined within the
output csv file and are not dependent on the file system. Using the embedded base64 images can
provide a performance improvement when a significant number of items are being processed.

Page 71 of 194

X9Utilities User Guide X9Ware LLC

End statement

The input csv file should always have an “end" line as the last populated row within this file. The
use of an end statement is provided to ensure that the logical end of file has been reached within
the writer. If you cannot provide an “end" line, then the ‘-enp" (end not provided) switch should be
set on the command line.

Action CSV

Create will always write the output “ACTIONS" csv file within the same folder at the output T25
csv file. This csv is used to inform you of various actions that have been taken against the input csv
and images. The actions csv file can be empty (length zero) when there were no unusual situations
or errors during processing, and the write recognition lines (-wrl) switch has not be enabled.

The first field within the ACTIONS csv file is a line type which defines the action that is being
reported. ype of data that is mage repair actions were needed. This csv fill have three columns:
front-or-back (“front", “back"), action-taken, fully qualified input image file name, and fully
qualified output image file name that will be located within the output image folder. The various
line types written to the ACTIONS file are as follows:

ACTIONS File Line Type Columns

“imageRepaired” – item has been recognized
and written.

[line type]
Input csv line number
Front image file name
Back image file name
Image side that was repaired: front or back
Input image dpi that was detected
Image action that was taken
Output repaired image file name that was written

“micrFailed” – failure to find and recognize
the micr line.

[line type]
Input csv line number
Front image file name
Back image file name

“accepted” – item has been recognized and
written.

“micrError” – one or more micr line fields did
not pass command line validations.

“loadFailed” – unable to load the image.

“repairFailed” – image repair was attempted
but unsuccessful.

“convertFailed” – image conversion from one
format to another was unsuccessful.

[line type]
Input csv line number
Front image file name
Back image file name
Failed micr line fields
MICR recognition confidence level
MICR line asterisk count
reserved-1
reserved-2
reserved-3
reserved-4
reserved-5
reserved-6

Page 72 of 194

X9Utilities User Guide X9Ware LLC

ACTIONS File Line Type Columns

“bitonalFailed” – image conversion to a bitonal
(black-white) image was unsuccessful.

“converted” – image format conversion was
successful.

“notFound” – image was not found.

“exception” – image processing exception.

reserved-7
reserved-8
reserved-9
reserved-10
MICR routing
MICR OnUs
MICR AuxOnUs
MICR EPC
Unparsed MICR line in its entirety

FAILURES CSV

Create will optionally write the “FAILURES” csv when the “-wcf” switch is enabled on the
command line. The FAILURES file is written within the same folder at the output T25 csv file.
This csv contains MICR failure items, written in the x9utilities-write T25 format.

All items where the MICR line cannot be successfully read, or that do not pass the various MICR
field validations that are enabled on the command line, will be written to the FAILURES files. Use
of this file will ensure that all input items to create are written, either to the standard output file or
to the failures file. Hence there are no escapes and all input items are account for.

Create will use the FAILURES file to manufacture a second output x9.37 file using these items.
This x9.37 file is similarly written within the same folder at the output T25 csv file. This will use a
similarly constructed FAILURES file name with an “x9” extension. These items are considered
failed in some manner. Although the FAILURES file will have images, the MICR fields within the
type 25 record may not be populated.

Command line options

Refer to the -write function for the command line switches that are supported by the writer, since
all of those switches are also available to create, along with the following additional switches:

Switch Description

-wrl Write the “accepted” MICR recognition lines to the ACTIONS file.

-wcf Write the FAILURES output csv file which is in x9utilities-write format and can be
used to construct a separate x9.37 file of those items which fail MICR recognition.

-routing Default is -routing:* which implies no specific validations. Additional values are m
(mandatory), v (apply validations), * (accept digit errors), and *n (accept a maximum
number of digit errors, eg, *2). For example, -routing:m.

-epc Default is -epc* which implies no specific validations. Additional values are m
(mandatory), v (apply validations), * (accept digit errors), and *n (accept a maximum
number of digit errors, eg, *2). For example, -epc:v.

Page 73 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

-onus Default is -onus:* which implies no specific validations. Additional values are m
(mandatory), v (apply validations), * (accept digit errors), and *n (accept a maximum
number of digit errors, eg, *2). For example, -onus:v*3.

-aux Default is -aux:* which implies no specific validations. Additional values are m
(mandatory), v (apply validations), * (accept digit errors), and *n (accept a maximum
number of digit errors, eg, *2). For example, -aux:v*3 .

-amount Default is -amount:* which implies no specific validations. Additional values are m
(mandatory), v (apply validations), * (accept digit errors), and *n (accept a maximum
number of digit errors, eg, *2). For example, -amount:v*3 .

-awx Abort when the selected output file already exists. The default action is to allow output
files to be overwritten. Setting switch -awx will force an abort instead of overwriting
the existing file.

-i Indicates that all incoming images should be written to the output “imageFolder".
When this switch is not present, only those images that are altered in some way (repair,
resize, convert) will be written to the “imageFolder".

-ic The output image folder for this run will be cleared when it already exists. This process
will only remove image files since those are the only file extensions which would be
expected to exist in the output image folder.

-ipof: Defines the number of images written within each subfolder that is created within the
output “imageFolder". Default is 1000. For example, a switch value of -ipof:500 will
create new image subfolders every 500 items. A value of zero indicates that subfolders
should not be created within the “imageFolder".

-threads Number of MICR recognition threads to be processed concurrently.

Command line examples

 x9util -create <input.csv>

reads <input.csv> and creates <output.csv> and <output.x937> within the designated input
folder. Since the HeaderXml file is not present on the command line, it must be defined as
the first row within the CSV items file. Note that we suggest that you do not use this
alternative, but instead take advantage of the flexibility that is provided when you define
HeaderXml on the command line. See the appendix for a full definition of available
HeaderXml file content. Images are passed to the writer as base64 strings.

 x9util -create <input.csv> <HeaderXml>

reads <input.csv> and creates <output.csv> and <output.x937> within the designated input
folder. Images are passed to the writer as base64 strings.

 x9util -create <input.csv> <HeaderXml> <output.csv>

Page 74 of 194

X9Utilities User Guide X9Ware LLC

reads <input.csv> and creates <output.csv> and <output.x937> within the designated
output folder. Images are passed to the writer as base64 strings.

 x9util -create <input.csv> <HeaderXml> <output.csv> <output.x937>

reads <input.csv> and creates <output.csv> and <output.x937> within the designated
output folder. Images are passed to the writer as base64 strings.

 x9util -create <input.csv> <HeaderXml> <output.csv> <output.x937> <outputImageFolder>

reads <input.csv> and creates <output.csv> and <output.x937> within the designated
output folder. All images are written to the provided output image folder and those file
names will be passed to the writer within the t25 lines.

Sample items file

This example uses the “imageFolder" line to specify the folder location of incoming images. By
doing so, your image file names can represent a lower level path, or possibly just the file name
itself. Using “imageFolder" is optional and can be reassigned within you input stream as often as
needed. The below example also includes an optional paid stamp that will be applied to the back
side image. Paid stamps are also optional and can similarly appear as often as needed within the
input stream, and are applied to those items that immediately follow until the next paid stamp is
encountered. You should review all examples that are provided for “-write", since all of those are
applicable to “-create".

imageFolder,"c:/users/x9ware5/documents/x9_assist/files_Utilities/Test file with 2 checks
reader_IMAGES/Bundle_000003"
paidStamp,11,10,10,1.800,"Company Name","For Deposit Only","Bank Name","Other","Instructions","As Needed"
i25,10002,44000001,"Image_000007_amount_10002_front.tif","Image_000009_amount_10002_back.tif"
i25,10004,44000002,"Image_000013_amount_10004_front.tif","Image_000015_amount_10004_back.tif"
end

Page 75 of 194

X9Utilities User Guide X9Ware LLC

DrawDraw

Draw reads a CSV file and then writes tiff images, as is provided as a companion tool to -write.
The writer function embeds dynamically drawn images directly into the x9.37 file that is being
constructed, while draw can be used to create those images and directly save them to external tiff
files, instead of inserting them into the type 52 records. Draw can be used to create single page
tiff’s for the front-back images, but can also be used to create multi-page tiff images, which will be
a single tiff image that contains both the front and back within a single image file.

Command line options

Switch Description

-dpi: Assigns the output image dpi used to draw images, with a default of 240. Assigned
values must be either 200 or 240.

-l Will list all incoming csv lines to the log.

-batch Invokes batch (folder based processing; see that earlier topic for more information.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to easily
repeat an X9Assist task directly in X9Utilities batch.

Draw csv line types

Switch Description

imageFolder Defines the folder used to load template images that are referenced when drawing
images from pre-constructed templates. The folder name is provided as the second
parameter, and typically would always be enclosed in quotes since it may contain
embedded blanks.

outputFolder Defines an optional high level folder to be used when writing the output images. This
line is not needed when the output image file names are fully qualified. The output
folder name can be changed as often as desired. The folder name is provided as the
second parameter, and typically would always be enclosed in quotes since it may
contain embedded blanks.

paidStamp Defines a paid stamp to be applied to back-side images. The paid stamp is optional and
can appear as often as needed within the csv file, and must appear before the items to
which it applies. The paid stamp can appear as often as needed within the csv file, even
at the item level.

item Provided information about each logical item to be drawn. Columns are as follows:
• Auxiliary OnUs
• External Processing Code (EPC)
• Routing
• OnUs
• Amount
• Identifier (any string you desire; for example the item sequence number)

Page 76 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

• Front image file name
• Back image file name. This file name can be defined as “omit", which means

that the back side image will not be created. It can also be defined as “multi",
which means that a multi-page tiff image is to be created that contains the front
and back side images within a single tiff file.

drawImages Provides information for the two images that are to be drawn. Refer to the -write
function for documentation and usage.

Command line examples

x9util -draw <input.csv>

reads <input.csv> and creates images per the item level csv lines.

x9util -draw <input.csv> <output.csv>

reads <input.csv> and creates images per the item level csv lines. The output csv is
essentially an echo of the input csv, but also contains confirmation of each of the images
that are created including their file size.

Page 77 of 194

X9Utilities User Guide X9Ware LLC

TranslateTranslate

Translate creates an output CSV of items, along with their associated exported images and an
optional HeaderXml file, all written in a format that is compatible with our Write function. The
data is written to a single CSV file that can be browsed to gain insight into how Translate
functions, or it can be processed by your applications.

Translate is generally used infrequently since our Export function is typically used to convert an x9
file to an output CSV. Export offers more flexibility with output formats and command line
options. Therefore, you would typically always use Export to create output CSV files.

However, Translate can be used when you have an x9 file and want to create test data specifically
for input to Write. This is the most common use case for the Translate tool.

Command line switches (parameters) are used to further control the Translate operation. You can
use these settings to indicate if you want to include the addendum records in the CSV data that is
written and if you want to extract and write the check images. From a design perspective, your
application should process only the CSV record types that you are interested in and ignore all
others. It is important not to abort if you encounter a CSV record type that is not required by your
application, as new CSV record types may be created in the future. Ignoring unneeded record types
will make it easier for you to install new releases.

When image extraction is enabled, the embedded image data will be written to an image folder that
is selected per the command line. Images will be stored in the exact TIFF format as they appear in
the x9 file. TIFF image file names are constructed to allow for easy correlation between an image
and its associated type 52 data record. Both front and back images are stored for each item.

The created CSV file includes the name of each image, which provides a direct association
between the x9 data and the images. The CSV file can be viewed with tools such as NotePad,
NotePad++, MS-Excel or analyzed and processed by your application programs. We generally do
not recommend using MS-Excel since it does a very poor job handling large numbers and
accommodating files that have a varying number of CSV columns. An alternative is to use the
CSV Editor that is provided with X9Assist.

Another usage for Translate is as a tool to convert an x9 file from one format to another. For
example, you may want to change the number of items per bundle, insert an offsetting credit into a
file that contains only debits, or change from one credit format to another. All of this can be
accomplished by using Translate to create a CSV which is then processed through Write, using
another HeaderXml file that is defined with the new attributes. In this situation, the
“noHeaderXml" and “noCredits" switches should be used to obtain an output CSV that contains
only checks (and no credits). These are generally more advanced file translations, so you will need
to familiarize yourself with how Translate and Write can be combined to achieve your desired
results. You will obviously need to thoroughly test the conversion process.

Page 78 of 194

X9Utilities User Guide X9Ware LLC

As part of the X9Utilities installation package, you can take a look at folder : / samples / translate /
as an example of a batch file that invokes the combination of translate-and-writer to accomplish
the reformatting of an x9.37 file. In this example, a type 61 credit is being inserted into a file that
otherwise contained only checks.

Command line options

Switch Description

-awx Abort when the selected output file already exists. The default action is to allow
output files to be overwritten. Setting switch -awx will force an abort instead of
overwriting the existing file.

-config: Use a specific x9 configuration. When this parameters is omitted, the file header
will be inspected to determine the most appropriate x9 configuration to be used.
However, you may also provide a specific “-config:" value. For example, this
parameter could be specified as “-config:x9.37" or “-config:x9.100-187-2008".

-a Includes check addenda records in the output csv file.

-i Will write images to the output images folder.

-noHeaderXml Excludes the “headerXml" line from the output CSV file. By default, the
headerXml file will be constructed and this line will be included in the output CSV.

-noCredits Excludes credits (record types 61 and 62) from the output CSV file, along with their
immediately attached addenda record. By enabling this parameter, the output CSV
file will contain checks only.

-j A summary JSON file will be created with a suffix of “_summary.json" in the same
folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the same
folder as the output CSV file.

-x A summary XML file will be created with a suffix of “_summary.xml" in the same
folder as the output CSV file.

-l Will list all csv lines to the system log.

-batch Invokes batch (folder based processing; see that earlier topic for more information.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to
easily repeat an X9Assist task directly in X9Utilities batch.

Command line examples

x9util -translate <input.x937>

translates <input.x937> and creates <input.csv> with associated images written to folder
<input_IMAGES>, all within the designated input folder.

x9util -translate <input.x937> <output.csv>

Page 79 of 194

X9Utilities User Guide X9Ware LLC

translates <input.x937> and creates <output.csv> with images written to folder
<output_IMAGES>, all within the designated output folder.

x9util -translate <input.x937> <output.csv> <imageFolder>

translates <input.x937> and creates <output.csv> with images written to <imageFolder>.

x9util -x -translate <input.x937> <output.csv>

translates <input.x937> and creates <output.csv> and <output.xml> with images written to
folder <output_IMAGES>, all within the designated output folder. A summary XML file
will be created.

x9util -j -i -translate <input.x937> <output.csv>

translates <input.x937> and creates <output.csv>, <output.xml> , and <output.txt> with
images written to folder <output_IMAGES>, all within the designated output folder. A
summary JSON file will be created.

Page 80 of 194

X9Utilities User Guide X9Ware LLC

Write/Translate Sample CSV filesWrite/Translate Sample CSV files

The following represents a sample CSV file in our recommended format. This is our most
commonly used layout and should be utilized whenever possible. It has the following benefits:

• The HeaderXml file is defined externally and would be identified on the writer command
line. This approach does not tag the CSV file to a specific HeaderXml file.

• All dates and record indicators are deferred to the HeaderXml file and are not contained
within the CSV.

• All information regarding the target financial institution is deferred to the HeaderXml file
as well. This is especially useful for a test deck, since it increases overall usability.

• File names are fully qualified and are not referenced as relative to an image folder.

t25,10002,44000001,087770706,"29602722/5526",,,,,"c:pathToFrontImage",“c:pathToBackImage"
t25,10004,44000002,097770592,"60333044/5587",,,,,"c:pathToFrontImage",“c:pathToBackImage"
t25,10006,44000003,077770392,"29343913/5178",,,,,"c:pathToFrontImage",“c:pathToBackImage"
end

The following represents a sample CSV file where the header record is stored in an external XML
file that is referenced from the first line and where the MICR scan lines are provided in their
entirety and must be parsed into the auxiliary OnUs, External Processing Code, Routing, and OnUs
fields. Providing the MICR line fields in parsed format should always be done when those fields
are available within your application. This parsing should only be used when otherwise necessary.

headerXml,"c:/users/x9ware5/x9utilities/files/x9headers.xml"
imageFolder,“c:/users/x9ware5/images/testFiles/Bundle1"
t25,"a087770706a29602722c5526c",0000010002,44000001
image,"Image_000013_amount_10002_front.tif"
image,"Image_000015_amount_10002_back.tif"
t25,"a097770592a60333044c5587c",0000010004,44000002
image,"Image_000019_amount_10004_front.tif"
image,"Image_000021_amount_10004_back.tif"
t25,"a077770392a29343913c5178c",0000010006,44000003
image,"Image_000025_amount_10006_front.tif"
image,"Image_000027_amount_10006_back.tif"
end

The following represents a sample CSV file where the header record is stored in an external XML
file that is referenced from the first line, and type 25 records are fully defined on a field by field
basis. This format is most commonly used when the various indicator values on the type 25 record
can vary on an item by item basis. When using this CSV format, the front and back images must be
specified on attached CSV lines. This format also allows the image creator routing and image
creator date to be explicitly (optionally) provided for each item. The format is as follows:

headerXml,"c:/users/x9ware5/x9utilities/files/x9headers.xml"
imageFolder,“c:/users/x9ware5/images/testFiles/Bundle1"
25,,,08777070,6,"29602722/5526",0000010002,4400000001,"G",8,1,"Y",00,0,"B"
image,"Image_000001_front.tif"
image,"Image_000001_back.tif"
25,,,09777059,2,"60333044/5587",0000010004,4400000002,"G",8,1,"Y",00,0,"B"
image,"Image_000002_front.tif"

Page 81 of 194

X9Utilities User Guide X9Ware LLC

image,"Image_000002_back.tif"
25,,,07777039,2,"29343913/5178",0000010006,4400000003,"G",8,1,"Y",00,0,"B"
image,"Image_000003_front.tif"
image,"Image_000003_back.tif"
end

Page 82 of 194

X9Utilities User Guide X9Ware LLC

ExportExport

Export reads an x9 file and then writes the individual x9 data records to an output CSV or XML
file. Images can be optionally extracted and individually written to an output folder. The image
output folder can be optionally cleared.

Export output can be an exact representation of the x9 file itself, or can be a subset of the records
that are present (based on your specific requirements). When images are exported, the image file
name will be placed into field 52.19 as proxy for the image itself. This file name is recommended
to be fully qualified (using the -i switch) but can also be relative (using the ir switch).

When Export is created using the -xc option, that output can then be used as input to our Import
tool. In this manner, export and import are companion tools that complement each other.

Export versus ExportCsv

Export is a very flexible tool that supports a variety of output CSV and XML formats. Export can
also operate against either single or multiple input files. All options are accepted via command line
switches. As of R5.03 and higher, Export has the ability to transform it’s CSV output into a user
defined sequence of columns. When using that facility, columns can contain a combination of
constant values and derived strings from the file being exported. This is accomplished by selecting
fixed column format (-xf) with translated columns (-xtr). You can also use the -iro switch to focus
completely on item records, and thus easily eliminate header and trailer records from the output.

ExportCsv is another alternative, and is different from Export in several important ways. Because
of that, you need to consider your requirements and determine which of these tools will best meet
your needs. Although ExportCsv and Export both provide facilities to control the order of CSV
output columns, there are still some significant differences:

• ExportCsv supports a series of output formats to be defined within a single xml definition,
where the specific format to be applied is provided via the command line. You should think
of this as a repository of all of your export formats, perhaps for both forward presentment
and returns, where you might need formats to vary by purpose, client, or customer. Export a
single column translate sequence which must be identified on the command line.

• ExportCsv allows CSV column headers (row one) to be customized; Export does not.
• ExportCsv will only export a single x9 input file; Export will export multiple.
• ExportCsv will only export to CSV; Export also exports to xml in addition to CSV.
• ExportCsv can accept all parameters through the xml definition (including switches);

Export requires all parameters to be provided via the command line.
• ExportCsv optionally allows the output file to be identified within the xml definition, while

Export requires the output file to be defined on the command line.
• Export did not include support for look-back fields in the output CSV from the file header,

cash letter header, or bundle header until the R5.04 release. This is the facility to reference
a specific field within another record type, eg, [1.4].

Page 83 of 194

X9Utilities User Guide X9Ware LLC

Export Formats for X9.37 Output

Export has several output formats that are used to write x9.37 output. These alternatives apply
equally to forward presentment and returns. Please use this summary to identify and select the
output that is most useful for your specific application.

Switch Description When Used Additional Options

-xf Output is written in a column
format, with one row for each
item. The data fields for each
item are parsed into fixed
columns which make it easy to
extract the data that you need.

This format is by far the most
straight forward to use for your
application, when your
requirement is generic access to
the item data and fields.

When using this output CSV
format, you may also want to
limit the record types that are
included in the output file. This is
an important consideration, since
header and trailer records contain
different layouts as compared to
our standard fixed column
format.

This format is used
when your application
requires the data but
you do not want to
write the code that is
necessary to locate data
fields across multiple
record types. It has the
advantage that the
standard fixed columns
are populated
regardless of the x9.37
standard being used.

-dp can be used to
include decimal points
in the amount fields.

-xm can be used to
export on a folder basis
(and not just from a
single input file).

-iro (item records only)
or -rectypes can be used
to either focus
specifically on item
records, or to instead
target specific record
types of your choosing.

-asis can be used to
export the raw data for
invalid amount fields;
they are otherwise
exported as zero.

-xfc Output is similar to “-xf" but will
include a descriptive column
names header as the first row in
the CSV file.

This format is used
when you want the
benefit of fixed fields,
where you also want to
include a descriptive
column header row.

-dp, -xm, and -asis as
described above.

-iro and -rectypes as
described above.

-xc Output is written on a record by
record and field by field basis.
The number output rows will
exactly match the x9.37 input
file. Note that the output format
will vary based on the file
specification that was used to
create the x9.37 file. This is
especially true when the input x9
file is in x9.100-180 format.

This format is used
when your application
requires access to the
x9.37 data exactly as it
appears on the x9.37
file.

By default, all record
types will be written.

-iro (item records only)
or -rectypes can be used
to either focus
specifically on item
records, or to instead
target specific record
types of your choosing.

Page 84 of 194

X9Utilities User Guide X9Ware LLC

Switch Description When Used Additional Options

-xm can be used to
export on a folder basis,
which means the entire
content of a specified
folder, and not just
from a single input file.

-xg Output is written on a group
basis, in a fashion that is similar
to -xc except that the fields for
each item are combined. This
means that only one row will
exist for each item, which will
contain all fields from the record
types 25, 26, 27, 28 (forward
presentment) and 31, 32, 33, 34,
35 (returns).

This format is used
when your application
requires access to the
x9.37 data exactly as it
appears on the x9.37
file, but you would like
the item data as a single
row, which eliminates
the need to peek
forward on record types
to see what is present in
the file.

By default, all record
types will be written.

-iro (item records only)
or -rectypes can be used
to either focus
specifically on item
records, or to instead
target specific record
types of your choosing.

-xm can be used to
export on a folder basis
(and not just from a
single input file).

-xmlf Output is written in our basic
XML flat format.

Usage is dependent on
your application
requirements.

There are numerous
third party XML
translators that can be
used to convert this
output to meet your
schema requirements.

-xmlh Output is written in our more
extensive XML hierarchical
format.

Usage is dependent on
your application
requirements. This xml
format is generally
more flexible than the
flat format.

There are numerous
third party XML
translators that can be
used to convert this
output to meet your
schema requirements.

Command line options

Switch Description

-awx Abort when the selected output file already exists. The default action is to allow output
files to be overwritten. Setting switch -awx will force an abort instead of overwriting
the existing file.

-config: Use a specific x9 configuration. When this parameters is omitted, the file header will
be inspected to determine the most appropriate x9 configuration to be used. However,

Page 85 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

you may also provide a specific “-config:" value.

-xc Export x9 records to csv (which is the default when other export to csv options are
otherwise not selected).

-xf Export items in fixed field format, which can be much easier to incorporate into your
application environment, since records and fields for each item have been parsed into
specific (fixed) columns.

-xg Export items in a variable field format (as a single row) which includes the item record
followed by all addendum records.

-xtr Allows the order of output columns to be translated (transformed) into another order,
which is identified using this command line switch. This facility must be used in
conjunction with the -xf format, where it will translate those fixed columns into an
order of your choosing. The output columns are defined as a comma separated list,
where each value is of the form p[i]s, where p is an optional constant to appear as a
prefix to the value, i is an optional fixed column index to be extracted, and s is an
optional constant to appear as a suffix to the value. You will need to reference the fixed
column numbers for detailed information as to how this facility works. Often time,
using the -xtr transaction facility can eliminate the need for you to develop your own
CSV translator. For example, you can create columns with the word “add" in column 1,
item sequence number in column 2, amount in 3, routing in 4, account number in 5,
check number in 6, front image file name in 7, and back image file name in 8, using the
following command line switch: -xtr:add,[2],[3],[4],[23],[25],[31],[32]

As of release R5.04, -export also supports look-back to earlier file header, cash letter
header, or bundle header records. An example would be [1.4] to refer back to the
immediate destination routing number within the type 01 file header record. This is the
same look-back facility that is provided via the -exportCsv function.

-iro Only the item record types (items and their associated addenda records) will be written.
This option is available as of R5.03 and higher, and is a bit easier to use for this special
case where the file headers and trailers are to be filtered out.

-rectypes Specific record types are to be included when exporting to csv using either the “xc" or
“xf" formats. Record types are identified as a list separated by the pipe (“|") character.
For example, -rectypes:"25|26|27|28" would limit the exported record types to types 25,
26, 27, and 28 on forward presentment files; -rectypes:"31|32|33|34|35" would limit the
exported record types to types 31, 32, 33, 34, and 35 on returns files. Fixed field export
will always select those record types that are associated with items, regardless of this
parameter (for example, you cannot turn off 50-52 record content using this switch
when extracting into fixed format). This parameter can be specified as “-
rectypes:items" to extract only the item record types, which are 25 thru 52, 61, and 62.
It can also be specified as “-rectypes:all" which is also the default assignment. Finally,
note that quote marks are often required around this parameter due to the embedded “|"
special character.

-dp Inserts decimal points into amount related fields when using the fixed field (-xf)

Page 86 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

format. Any field which contains “amount" within the field name will have the decimal
point automatically inserted. This feature is disabled by default.

-ef Includes fields which contain blanks data in the xml export.

-ei Inserts images directly into field 52.19 as base64 strings during xml export.

-i Exports images to the image folder with absolute file names inserted into 52.19 as
proxy for the image data.

-ir Exports images to the image folder with relative file names inserted into 52.19 as proxy
for the image data.

-i64 Exports images in base64-basic format, which are inserted into 52.19.

-i64mime Exports images in base64-mime format, which are inserted into 52.19.

-tif Exported images will be in TIF format (this is the default).

-png Exported images are converted from TIF to PNG format (this can be time consuming).

-jpg Exported images are converted from TIF to JPG format (this can be time consuming).

-gif Exported images are converted from TIF to GIF format (this can be time consuming).

-ird Exports images to the image folder where those images have been reformatted as
image replacement documents (IRDs). The input file can be either forward presentment
or returns, with creator information and dates all extracted from the item addenda
records. The absolute file names are inserted into 52.19 as proxy for the image data.

-mptiff Creates and exports a multi-page tiff image to the image folder from the front+back tiff
images for each item. Creation of multi-page tiff images is a processor intensive
operation due to the associated image encoding and compression activities.

-mpird Similar to mptiff, this parameter creates and exports a multi-page tiff image to the
image folder for the formatted IRD versions of the front+back tiff images for each
item. Creation of multi-page tiff images is a processor intensive operation due to the
associated image encoding and compression activities.

-ipof Defines the number of images written per output folder, where the default value of zero
creates output image folders that mimic the bundle structure of the current x9.37 file.
You can alter this behavior by setting this count to a larger number (eg, 1000) which
provides a consistent number of images per output folder, and is especially useful when
there are small bundle sizes.

-xm Exports from multiple input files that are present in a cascading fashion within a
provided input folder (this means that the input can contain a mix of files and folders).
All input files are read with the output written to a single csv. This function will run for
excessively longer times, depending on the number of input files. It takes advantage of
multi-threading to reduce runtime. It will take much longer when images are written,
given the IO needed to write the images. As a result, consideration should be taken
based on your specific application. The -xm switch requires that you identify allowable
file extensions via the -exti switch.

Page 87 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

-exti Provides file extensions for multi-file export, where the input is a folder of files and is
not a single input file. In that situation, -exti specifies the file extension(s) of the x9.37
files to be selected for export. There can be one or more file extensions which are
separated by the pipe (“|") character. For example, -exti:"dat|x937" will select all files
from the input folders that have either the “dat" or “x937" file extension. Specifying a
value of -exti:* will accept all extensions and is the default on Linux/OSX, etc. Note
that quote marks are needed around this parameter due to the embedded “|" special
character.

-xmlf and -
xmlh

Exports to xml (instead of our default which otherwise exports to csv). Use -xmlf to
export into our basic (flat) format, and -xmlh to export to our hierarchical format.

-xt Export tiff tags to csv.

-skpi:nnn Indicates a number of seconds that is compared against each individual file creation
time and is used to bypass files that are very recently created within the input folder
and may be in the process of being transmission. Files that do not meet this minimum
skip interval are considered as “in-progress" and will be bypassed. Default value is 60.

-awe Aborts with an exit status of minus one when the input x9 file is empty. This option is
by default disabled, which means that an empty x9 file will produce an empty CSV file
with an exit status of zero.

-j A summary JSON file will be created with a suffix of “_summary.json" in the same
folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the same folder
as the output CSV or XML file.

-x A summary XML file will be created with a suffix of “_summary.xml" in the same
folder as the output CSV or XML file.

-l Will list all x9 records to the system log.

-batch Invokes batch (folder based processing; see that earlier topic for more information.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to easily
repeat an X9Assist task directly in X9Utilities batch.

Command line examples

x9util -export <input.x937>

reads <input.x937> and creates file <input.csv> within the designated input folder. A
default image folder will be created using the input file name.

x9util -export <input.x937> <output.csv>

reads <input.x937> and creates file <output.csv> within the designated output folder. A
default image folder will be created using the output file name.

Page 88 of 194

X9Utilities User Guide X9Ware LLC

x9util -export <input.x937> <output.csv> <imageFolder>

reads <input.x937> and creates file <output.csv> within the designated output folder with
images written to the specified image folder when separately activated using the “-i" or “-
ir" switches.

x9util -j -i -export <input.x937> <output.csv>

reads <input.x937> and creates file <output.csv> within the designated output folder.
Images are written to the output image folder and those image file names are populated into
field 52.19. Summary JSON file will be created.

x9util -x -export <input.x937> <output.csv>

reads <input.x937> and creates file <output.csv> within the designated output folder. A
summary XML file will be created.

x9util -xml -i -j -export <input.x937> <output.xml>

reads <input.x937> and creates file <output.xml> within the designated output folder. By
default only non-blank fields will be included in the created xml file. Images will be
exported to an output folder which will be created adjacent to the output file. Image file
names will be formatted on an absolute basis and inserted into field 52.19 of the exported
xml. A summary JSON file will be created.

Type 52 Images

Export will insert the name of the each image file into its corresponding type 52 image view data
record. The name is stored into field 5.19, which is normally houses the image data. By putting the
check image file name into field 52.19, Export is able to logically associate each image with its
type 52 record. Note that when using the x9.100-180 standard, images are stored in field 52.27,
which is fully supported by this process. .

When the type 52 record is exported, the image field is updated to contain one of the following
values, subject to the selected options:

• Absolute file name, which contains the drive and path (folder) of each image file along
with the actual file name. It is recommended that you use absolute file names since they
fully describe the output file location. Absolute file names are required when the exported
file is used by certain internal functions such as Generate.

• Relative file name, which contains the base file name only (it does not include the path).
Relative names are useful when the exported CSV and images will be transported to other
environments or systems.

• Base64-basic encodes the image using base64 and inserts the resulting string into the image
field. This eliminates the external storage of the image in the file system and can simplify

Page 89 of 194

X9Utilities User Guide X9Ware LLC

access to the image data. Base64 image exports run substantially faster than exports into
the file system, since the operating system overhead to update the file system is eliminated.
Image size is typically increased by 30-40 percent when using this encoding format.

• Base64-mime is similar to base64-basic encoding, just based on the MIME format.

Exported Image Formats

When exporting images, you can optionally select the image format that will be created, which can
be TIF, PNG, JPG, or GIF. It is important to realize that embedded images within x9.37 files are in
TIF format. This means that when images are written in TIF format (which is the default), they can
be written exactly as they are contained within the x9.37 file and do not need to be converted in
any manner. However, export also allows you to select an alternative format. When that is done,
images must be converted from the TIF format to the user selected format. Please realize that
image conversions can be time consuming, with PNG probably being the better alternative given
its performance and compression. PNG and JPG images will retain their original size and DPI.
Since GIF images to not have an internally defined DPI, they will be standardized to 200 DPI as a
matter of convenience. Image conversions should be utilized carefully and only when absolutely
needed. An alternative is to export images in TIF format and then subsequently utilize a batch
conversion strategy to convert them later, perhaps when importing them into an archive or user
application.

Export Considerations

You can use exported files as input to other applications such as Excel or your proprietary
application systems. Export is an excellent tool to allow you to create CSV files that are shareable
and can be used in a large variety of ways.

You can optionally browse the created text files using various industry standard tools such as
Excel, Libre Office, NotePad or NotePad++. These tools include search facilities allowing you to
find data on a string basis.

This table contains all export formats with additional considerations regarding their usage.

Description Switch Importable?
Selected Record

Types ?
Comments

(1) CSV parsed
items into
fixed fields.

-xf

Include
the -i

switch
to write
images.

No Yes Items are parsed into
individual fields and exported
into a fixed column format.
This format can be easier to
process since the items are
populated on a standard basis
into fixed columns. This item
format is constant and does not
vary regardless of the file type
(forward presentment or
returns) and the associated x9

Page 90 of 194

X9Utilities User Guide X9Ware LLC

Description Switch Importable?
Selected Record

Types ?
Comments

standard (x9.37 versus x9.100-
180). Data fields for non-item
groups (file headers, cash
letter headers, bundle headers,
etc) can be optionally included
and will be presented in their
native format.

(2) CSV in
native x9
format
without
images.

-xc Yes, but only if
the images are

drawn as proxies
since the actual
images are not
exported along
with the data,
and then also
only when all

record types are
exported.

Yes This format contains the field
values within the selected x9
record types per the associated
x9 standard. It provides a full
representation of the x9 data
content for the selected record
types, and a complete data
representation of the entire file
when all x9 record types are
selected. A common usage is
to limit the export to certain
record types based on need.
For example, the export might
be limited to the type 01 file
header, the type 25 check
records, and the type 26-28
addenda records. The output
line numbers will match back
to the input x9 file when all x9
record types have been
selected.

(3) CSV in
native x9
format with
images.

-xc with
the

-i switch
to write
images.

Yes, but only
when all record
types have been

exported.

Yes This format contains the field
values within the selected x9
record types per the associated
x9 standard. The output line
numbers will match back to
the input x9 file when all x9
record types have been
selected. This export file can
be modified using various
standard editor tools and then
imported to create a new x9
file which has been changed
per user specific requirements.
For example, the order of
certain record types within the

Page 91 of 194

X9Utilities User Guide X9Ware LLC

Description Switch Importable?
Selected Record

Types ?
Comments

file can be changed; records
can be removed; individual
fields can be modified. Repair
can also be run after the file is
imported to correct trailer
records when desired.

(4) CSV record
groups into
variable
columns.

-xg

Include
the -i

switch
to write
images.

No Yes Output is constructed on a
record group basis, where each
group is the owner record type
with all attached subordinate
types. This format can be
easier to parse since the x9
records for each group are
concatenated into a single
string which eliminates the
need to separate the rows into
record groups in your parser.
This format has the further
benefit that all x9 fields are
present. Note that specific
record types (of your
choosing) can be excluded and
will not appear within the
output. For example, you can
exclude record types 50-52 if
that data is not needed.

(5) XML. -xml No Yes Our standard XML format will
be written. There are
numerous third party XML
translators that can be used to
convert this output to meet
your schema requirements.

(6) Tiff tag
information.

No No This export format provides a
vision into the tiff tags that are
present for each image and is
useful when performing a
detailed image analysis for a
specific originator or capture
system.

(7) X9 data. No Yes X9 records are exported in
their text (txt) form, which
provides access to their record

Page 92 of 194

X9Utilities User Guide X9Ware LLC

Description Switch Importable?
Selected Record

Types ?
Comments

data (eg, typically 80 bytes
long) in the exact format as
present on the x9 file. When
using this export format, there
is an option to append the
record number as either a
suffix or prefix to the written
data. Appending the record
number allows you to sort the
data on various fields and still
be able to resort the records
into their original order. The
record number also allows you
to trace every record back to
the original location within the
original x9 file.

(8) XML. No Yes Export to XML builds an
output xml file that can be
processed by other xml
enabled applications. Please
advise if you have
requirements for this
functionality and we would be
glad to work with you on
building new xml formats for
specific vendor applications.

(9) Errors. N/A N/A Errors for the current x9 file
are exported and shared with
others. All selection criteria
apply (x9 record number
range and record types). The
export can be limited by type
(data or image) or severity
(error, warn, and info). Output
is in a fixed format which can
be easily analyzed.

Type 52 Records

Export will insert the name of each image file into its corresponding type 52 image view data
record. The name is stored into field 5.19, which is normally houses the image data. By putting the
check image file name into field 52.19, Export is able to logically associate each image with its
type 52 record.

Page 93 of 194

X9Utilities User Guide X9Ware LLC

When the type 52 record is updated, the check image file name can be stored on either an
“absolute" or “relative" basis. Absolute file names will contain the drive and path (folder) of each
image file along with the actual file name, while relative file names do not include their path. It is
recommended that you use absolute file names since they fully describe the output file location.
Absolute file names are required when the exported file is used by certain internal functions such
as Generate. However, you can also elect to use relative file names, which would allow you to
transport the CSV and images to other folder structures and still be able to import the results.

Export as Items into Fixed Columns

Items can be parsed into logical field content and then exported into fixed columns. This format
can be easier to parse since the location of individual data columns will be fixed which can
simplify your subsequent parsing of this data. Specifically, the type 25 and type 31 records are
parsed into logical items that will contain the following columns:

Columns Data Content

1 Record type

2 Amount

3 Item sequence number

4 MICR Routing

5 MICR OnUs

6 MICR Auxiliary OnUs

7 MICR EPC

8 Documentation type indicator

8 Returns Acceptance Indicator

10 MICR valid indicator

11 BOFD indicator

12 Addendum count

13 Correction indicator

14 Archive type indicator

15 Credit account

16 Return reason

17 Forward bundle date

18 Return notification indicator

19 Payor bank name

20 Payor bank business date

Page 94 of 194

X9Utilities User Guide X9Ware LLC

Columns Data Content

21 Payor account name

22 Field4 parsed from the item MICR OnUs field

23 Account parsed from the item MICR OnUs field

24 Process Control parsed from the item MICR OnUs field

25 Check number, which is assigned first from MICR AuxOnUs (when
populated), from MICR Process Control (when that field contains four or
more numeric digits), and is otherwise not populated

26 Reserved-1

27 Reserved-2

28 Image creator date from the front image

29 Image creator routing from the front image

30 Image reference key from the front image

31 Front image name or multi-page image name (when exported).

32 Back image name (when exported)

33-45 First primary (26 or 32) or secondary (28 or 35) endorsement

33 Record type

34 Routing

35 Endorsement date

36 Item sequence number

37 Deposit account number

38 Deposit branch

39 Payee name

40 Truncation indicator

41 Conversion indicator

42 Return reason

43 Endorsing bank identifier

44 User field

46-58 Second endorsement

59-71 Third endorsement

72-84 Fourth endorsement

Etc Continued for as many endorsements that exist for this item

Page 95 of 194

X9Utilities User Guide X9Ware LLC

Notes on Check Number

Check number will be in one of two fields depending on the data that is present, which is largely
based on check size. There are two physical check sizes (business checks and wallet checks).
Typically, business checks are 8+ inches wide while wallet (consumer) checks are 6 inches wide.
Because of the larger width associated with business checks, they can encode the MICR AuxOnUs
field which is where they can place a check number that is up to 15 digits long. This larger field is
needed to accommodate the long check number that is required by business accounts. In our fixed
field export, the AuxOnUs field is present in CSV column 6.

Retail (consumer) checks utilize the wallet format and do not have encoding space for the
AuxOnUs field. Because of this, their check number is more typically placed in the MICR OnUs
field next to the account number. For example, the MICR OnUs field can be found as formatted
“accountNumber/processControl", where the process control field contains the check number and
is typically four digits. If the process control field contains less then four digits, then it is more
likely a transaction code and not a check number. The bottom line is that although this is a
common practice utilized by many financial institutions, it is not an absolute standard so you there
will be variations from this implementation. In our fixed field export, the MICR OnUs field is
present in CSV column 5 and the parsed Process Control field is in fixed field 24.

Check number would then typically be found in one of these two fields. The business logic to
extract the check number would be as follows:

• If MICR AuxOnUs is populated (not blank), then it contains the check number.
• Otherwise, if Process Control is populated (not blanks) and contains four or more digits,

then that field contains the check number.

Notes on Check Date

The data that a check was physically written is not present in the x9.37 data and is only present in
hand writing within the front side check image.

The best data that is present within the x9.37 standards for check data would instead be the date
that the item was presented to the bank of first deposit. If the check is deposited on a timely basis,
then this presentment date from the BOFD addenda record is an approximation of the check date,
subject to the data that is available within the x9.37 data fields. In our fixed field export, the BOFD
addenda date from the type 26 record is in CSV column 35.

Export as Native X9 Format

Native format follows the current x9 specification. For example, an input x9 file encoded per the
x9.37 DSTU specification will be exported per the record layouts that are defined by that standard.
You must reference the associated x9 specification to obtain a list of the fields that are exported by
record type. These fields will be the same as displayed within the X9Assist viewers. This export
format has the advantage that it covers the entire extent of the x9 file specification.

Page 96 of 194

X9Utilities User Guide X9Ware LLC

When using this export format, there is an additional option to append the record number as either
a suffix or prefix to the written data. Appending the record number allows you to sort the data on
various fields and still be able to resort the records into their original order. The record number also
allows you to trace every record back to the original location within the original x9 file.

Export as Groups into Variable Columns

Records can be exported as groups and not individual record types. A record group consists of the
owner record type (for example, a type 25 or type 31) followed by all records that are attached to
that owner. Although the concept of record groups only applies to items, it also logically applies to
other record types when they are the owner of type 68 user records. For example, a record group
might consist of only a single type 01 file header, but it could also consist of a type 01 file header
followed by two type 68 user records.

Record groups are exported as a CSV of all record types and fields within the group. For an item,
this single CSV row might contain fields for the following record types: 25, 26, 28, 52, 54, 52, and
54. Also remember that record types can be excluded from this process. For example, you can
exclude record types 50 and 52 from the export, and in that case this same record group would be
exported as: 25, 26, 28, and 28. If you only need the item with the attached BOFD endorsement,
then you can exclude 28, 50 and 52, and then the exported record group will consist of just the 25
and 26 records. Although these are examples of forward presentment files, the process applies
equally to return files.

This export format is provided as a convenience since it may be easier to parse by your application
programs. Although the concept of record groups is shared with item export, it has the benefit that
it includes every field with the individual record types will be exported.

Export the Type99 Trailer Record

There are situations where there is a need to read an input x9 file and export only the type 99 file
control trailer record to CSV. This can be achieved using the -xc and -rectypes:99 command line
parameters. The result will be an output CSV file that contains a parsed representation of the type
99 record, which contains file totals. Similarly, -rectypes:"01|99" will limit the export to the file
header and file control trailer records.

In addition to this to this approach, you can add either the -t (output text file) or -x (output xml file)
command line parameters to various x9utilities export functions, which will create a summary file
with file totals.

Export as Errors

Errors can be exported in CSV format to allow you to get a list of errors associated within a given
X9 file that you can easily share with others. All of the previously stated selection criteria applies
(x9 record number range and record types).

In addition, error export allows you to indicate that you want to limit the export based on:
Page 97 of 194

X9Utilities User Guide X9Ware LLC

• All errors
• X9 errors only
• Image (tiff) errors only

You can also identify the severity of the errors to be exported. This can be all error severities, or
combinations of error level, warn level, and info level. The field data that is written is aligned per
the columns as depicted on the Errors tab. This list of fields is as follows:

1) Error description
2) Error identifier
3) Error record number
4) Error field number
5) Error field name
6) Error field x9 data position
7) Error field x9 data length
8) Error field value
9) Error field mandatory indicator
10) Error field list of allowable values
11) Error field primary edit rule
12) Supplemental information
13) Item amount
14) Item ECE sequence number
15) Item routing number
16) Cash letter record number
17) Cash letter identifier
18) Cash letter amount
19) Cash letter business date
20) Bundle record number
21) Bundle amount
22) BOFD routing number
23) BOFD business date
24) BOFD sequence number

Sample CSV output (which is the default format)

01,03,"T",123456780,123456780,20140810,1201,"N","VIEW","VIEW","A",,,
10,01,123456780,123456780,20140808,20140810,1201,"I","G",1,"X9Assist",,"C",,
20,01,123456780,123456780,20140808,20140810,57000000,1,,123456780,,
25,,,08777070,6,"29602722/5526",0000010002,44000001,"G",8,1,"Y",01,0,"B"
26,1,123456780,20140807,44000001,,,,"Y",0,,,
50,1,087770706,20140807,00,00,0006302,0,00,0,,,,,0,,
52,123456780,20140808,,44000001,,,,0,,,,,0000,,0,,0006302,"c:/users/x9ware5/documents/
x9ware/fileUtilities/Test file with 2 checks
exporter_IMAGES/Bundle_000003/Image_000007_amount_10002_front.tif"
50,1,087770706,20140807,00,00,0001865,1,00,0,,,,,0,,

Page 98 of 194

X9Utilities User Guide X9Ware LLC

52,123456780,20140808,,44000001,,,,0,,,,,0000,,0,,0001865,"c:/users/x9ware5/documents/
x9ware/fileUtilities/Test file with 2 checks
exporter_IMAGES/Bundle_000003/Image_000009_amount_10002_back.tif"
25,,,09777059,2,"60333044/5587",0000010004,44000002,"G",8,1,"Y",01,0,"B"
26,1,123456780,20140807,44000002,,,,"Y",0,,,
50,1,097770592,20140807,00,00,0006679,0,00,0,,,,,0,,
52,123456780,20140808,,44000002,,,,0,,,,,0000,,0,,0006679,"c:/users/x9ware5/documents/
x9ware/fileUtilities/Test file with 2 checks
exporter_IMAGES/Bundle_000003/Image_000013_amount_10004_front.tif"
50,1,097770592,20140807,00,00,0001865,1,00,0,,,,,0,,
52,123456780,20140808,,44000002,,,,0,,,,,0000,,0,,0001865,"c:/users/x9ware5/documents/
x9ware/fileUtilities/Test file with 2 checks
exporter_IMAGES/Bundle_000003/Image_000015_amount_10004_back.tif"
70,0002,000000020006,000000020006,00004,,
90,000001,00000002,00000000020006,000000004,"File Generator",20140810,
99,000001,00000018,00000002,0000000000020006,,,

XML Flat Format Example (created using the -xmlf switch)

This is sample type 25 record as exported into flat format:

 <record><type>25</type><index>25</index><name>Check Detail Record</name>
 <field><number>25.1</number><name>Record Type</name><value>25</value></field>
 <field><number>25.4</number><name>Payor Bank Routing

Number</name><value>07777039</value></field>
 <field><number>25.5</number><name>Payor Bank Routing Number Check

Digit</name><value>2</value></field>
 <field><number>25.6</number><name>MICR

On-Us</name><value>29343913/114</value></field>
 <field><number>25.7</number><name>Amount</name><value>0000010006</value></field>
 <field><number>25.8</number><name>ECE Institution Item Sequence

Number</name><value>44000003</value></field>
 <field><number>25.9</number><name>Documentation Type

Indicator</name><value>G</value></field>
 <field><number>25.10</number><name>Return Acceptance

Indicator</name><value>3</value></field>
 <field><number>25.11</number><name>MICR Valid

Indicator</name><value>1</value></field>
 <field><number>25.12</number><name>BOFD Indicator</name><value>Y</value></field>
 <field><number>25.13</number><name>Check Detail Record Addendum

Count</name><value>02</value></field>
 <field><number>25.14</number><name>Correction

Indicator</name><value>3</value></field>
 <field><number>25.15</number><name>Archive Type

Indicator</name><value>D</value></field>
 </record>

Page 99 of 194

X9Utilities User Guide X9Ware LLC

XML Hierarchical Format Example (created using the -xmlh switch)

This is sample type 25 record as exported into hierarchical format:

<type-25><index>4</index><name>Check Detail Record</name>
 <RecordType><number>25.1</number><value>25</value></RecordType>
 <PayorBankRoutingNumber><number>25.4</number><value>05777093</value></

PayorBankRoutingNumber>
 <PayorBankRoutingNumberCheckDigit><number>25.5</number><value>0</value></

PayorBankRoutingNumberCheckDigit>
 <MICROn-Us><number>25.6</number><value>209 153 53/111</value></MICROn-Us>
 <Amount><number>25.7</number><value>0000010000</value></Amount>
 <ECEInstitutionItemSequenceNumber><number>25.8</number><value>44000000</value></

ECEInstitutionItemSequenceNumber>
 <DocumentationTypeIndicator><number>25.9</number><value>G</value></

DocumentationTypeIndicator>
 <ReturnAcceptanceIndicator><number>25.10</number><value>0</value></

ReturnAcceptanceIndicator>
 <MICRValidIndicator><number>25.11</number><value>1</value></MICRValidIndicator>
 <BOFDIndicator><number>25.12</number><value>Y</value></BOFDIndicator>
 <CheckDetailRecordAddendumCount><number>25.13</number><value>02</value></

CheckDetailRecordAddendumCount>
 <CorrectionIndicator><number>25.14</number><value>0</value></CorrectionIndicator>
 <ArchiveTypeIndicator><number>25.15</number><value>A</value></ArchiveTypeIndicator>
</type-25>

Page 100 of 194

X9Utilities User Guide X9Ware LLC

ExportCsvExportCsv

ExportCsv provides a variation on the capabilities that are offered by the alternative Export
function. ExportCsv is especially useful when you need to define specific csv output columns, or
embed the export parameters within an xml control file.

ExportCsv field names

Fields to be exported are defined using their “record dot field" name. For example, 25.7 is the type
25 amount field. Fields can be selected from the following record types:

• Type 01 – file header
• Type 10 – cash letter header
• Type 20 – bundle header
• Type 25/31/61/62 – debit or credit records
• Type 50 – front image view detail record
• Type 52 – front image view data record

Special field names

In addition to the “record dot field" name format, there are several special field names that can be
used for specific conditions:

Field Name Content

MicrRouting Combination of the item 8 digit routing plus the 1 digit check it.

AccountNumber Account number as extracted from the MICR OnUs field.

CheckNumber Check number, which is first taken from AuxOnUs (when populated) and
otherwise extracted from MICR OnUs. Check numbers within MICR OnUs
must be at least four (4) digits in length. If your application requires MICR
OnUs check numbers that are shorter than 4 digits, then you should instead
write your own extraction logic using the provided fields.

ReturnReason Best return reason extracted from the item addenda records.

FrontImage Front image.

BackImage Back image.

Image formats

Images are typically always exported into TIFF format, since that is the image exchange format.
However, several other formats are available. These should be used carefully, since conversions
can be imperfect, and they will always take additional time. The image formats that are available
are as follows:

• tif
• png
• jpg
• gif

Page 101 of 194

X9Utilities User Guide X9Ware LLC

Image methods

In addition to the “record dot field" name format, there are several special field names that can be
used for specific conditions:

Image Method Functionality

a Absolute (fully qualified) file name.

r Relative file name (contains only the base part of the fully qualified name).

b Base64 basic format (the image will be embedded within the csv).

m Base64 mime format (the image will be embedded within the csv).

Command line options

Switch Description

-awx Abort when the selected output file already exists. The default action is to allow output
files to be overwritten. Setting switch -awx will force an abort instead of overwriting
the existing file.

-j A summary JSON file will be created with a suffix of “_summary.json" in the same
folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the same folder
as the output CSV or XML file.

-x A summary XML file will be created with a suffix of “_summary.xml" in the same
folder as the output CSV or XML file.

-l Will list all x9 records to the system log.

-xctl: Specifies the name of the export xml control file to be loaded, which define all
available export formats. In the most simple of cases, the control xml control file will
contain a single output format. However, in more complex cases, you might have a
separate output format for various specific purposes (perhaps by downstream
application system, or perhaps for each customer that is to receive these files). Each
output format within the xml control file is given a name, which should correspond to
the purpose.

-xfmt: Specifies the name of the export format definition to be used within the export control
file. This is a string value that might be defined as “customer3" or “imageArchive".
This name must represent an output format entry with the export xml control file. The
format defines the columns to be created, the name of the output csv file to be written,
the name of the output image folder which will be created, and the various xml
parameters that are used to control the export process.

Command line examples

x9util -exportCsv -xctl:<xmlExportControlFile>" -xfmt:<xmlExportFormat> <input.x937>

Page 102 of 194

X9Utilities User Guide X9Ware LLC

reads <input.x937> and creates an output csv with the user defined columns. The output
csv file name is defined within the xml export control file.

x9util -exportCsv -xctl:<xmlExportControlFile>" -xfmt:<xmlExportFormat> <input.x937>
<output.csv> <imageFolder>

reads <input.x937> and creates <output.csv> with the user defined columns. The output
file and image folder names are taken from the xml export control file first and the
command line second.

x9util -t -exportCsv -xctl:<xmlExportControlFile> -xfmt:<xmlExportFormat> <input.x937>

reads <input.x937> and creates file and output csv with the user defined columns.
Summary TXT file will be created

ExportCsv XML Definition

The ExportCsv XML file is used to customize the columns that are created when a file is exported
to CSV. It allows you to including only those columns that are needed by your application, and
also to define the order that those fields will appear in the output CSV file. Each of these XML
definitions are completely self-contained, with the output file name and all associated parameters
as required for the CSV export operation. This approach minimizes command line parameters and
instead locates those within the XML definition. This XML file can include the following tags:

XML Tag Content Comments

 <exportName> Name of this export format. Must be unique within
this overall definition.

<csvFileName> Fully qualified output csv file name to be
created.

<imageFolder> Fully qualified folder where images will be
written. A sub-folder will be created within
this folder using the input file name.
Additional folders will then be created at the
bundle level.

<configName> “auto" or a valid configuration name.
Examples are x9.37, x9.100-187-2008, etc.

auto=automatically
assigned based on file
header inspections

Page 103 of 194

X9Utilities User Guide X9Ware LLC

XML Tag Content Comments

<dateTimeStamp> A date pattern to be utilized when output
segments are to be suffixed with a time stamp.
This facility can be used to make all output
file names unique. A commonly used
assignment would be:
yyyyMMdd_HHmmss . You can do an
internet search on “Java Date Format Pattern"
for all allowable pattern characters and usage
examples.

Omitted.

<doNotRewrite> Indicates if an existing output segment can be
overwritten. Values can be true or false.

False.

<clearImageFolder> Determines if the output image folder should
be cleared. Values are true or false.

true

<includeColumnHeaders> Determines if column header names should be
included as row one. Values are true or false.

false

<includeDecimalPoints> Determines if decimal points should be
inserted into amounts. Values are true or false.

false

<summaryTxtFile> Determines if the summary txt file (which
contains totals from the input file) should be
created. Values are true or false.

false

<summaryXmlFile> Determines if the summary xml file (which
contains totals from the input file) should be
created. Values are true or false.

false

<imageFormat> Defines the output image format. The TIFF
format is highly recommended, since it allows
the images to be copied exactly as they exist
on the input file. Note that image conversions
will add substantially to run time.

tif; alternative values are
png, jpg, and gif; an
empty string (eg,
<imageFormat/> turns
image export off.

<imageMethod> Defines how images are exported. This can be
either as a file name that is included in the
column (“a" or “r") or as a base64 string that
is inserted into the column (“b" or “m").

a=absolute file name,
r=relative file name,
b=base64 basic,
m=base64mime

<fields> A list of all output CSV fields that will be
created.

<field> <fields> child tag that defines the record dot
field for the next column to be exported.

<columnName> <fields> child tag that defines the column
name to be assigned for this field (in row one)
when <includeColumnHeaders> is true.

Defaults to field name
per the rules
specification.

Page 104 of 194

X9Utilities User Guide X9Ware LLC

Sample XML for Forward Presentment and Returns
<?xml version="1.0" encoding="UTF-8"?>
<exportCsv>
 <formats>
 <format>

 <exportName>exportForwardPresentment</exportName>
 <csvFileName>C:\Users\X9Ware5\Documents\x9_assist\files_Utilities\exportTest.csv</csvFileName>
 <imageFolder>C:\Users\X9Ware5\Documents\x9_assist\files_Utilities\exportedImages</imageFolder>
 <configName>auto</configName>
 <dateTimeStamp></dateTimeStamp>
 <doNotRewrite>false</doNotRewrite>
 <clearImageFolder>true</clearImageFolder>
 <includeColumnHeaders>true</includeColumnHeaders>
 <includeDecimalPoints>true</includeDecimalPoints>
 <summaryTxtFile>true</summaryTxtFile>
 <summaryXmlFile>true</summaryXmlFile>
 <imageFormat>tif</imageFormat>
 <imageMethod>a</imageMethod>
 <fields>
 <output> <field>1.4</field> </output>

<output> <field>1.5</field> </output>
<output> <field>10.3</field> </output>

 <output> <field>10.4</field> </output>
<output> <field>20.5</field> </output>
<output> <field>20.10</field> </output>
<output> <field>25.8</field> </output>
<output> <field>25.7</field> <columnName>ItemAmount</columnName></output>
<output> <field>MicrRouting</field> </output>
<output> <field>25.3</field> </output>
<output> <field>25.2</field> </output>
<output> <field>25.6</field> </output>
<output> <field>26.3</field> </output>
<output> <field>26.4</field> </output>
<output> <field>26.8</field> </output>
<output> <field>50.3</field> </output>
<output> <field>ReturnReason</field> </output>
<output> <field>FrontImage</field> </output>
<output> <field>BackImage</field> </output>

 </fields>
 </format>

 <format>
 <exportName>exportReturns</exportName>
 <csvFileName>C:\Users\X9Ware5\Documents\x9_assist\files_Utilities\exportTest.csv</csvFileName>
 <imageFolder>C:\Users\X9Ware5\Documents\x9_assist\files_Utilities\exportedImages</imageFolder>
 <configName>auto</configName>
 <dateTimeStamp></dateTimeStamp>
 <doNotRewrite>false</doNotRewrite>
 <clearImageFolder>true</clearImageFolder>
 <includeColumnHeaders>true</includeColumnHeaders>
 <includeDecimalPoints>true</includeDecimalPoints>
 <summaryTxtFile>true</summaryTxtFile>
 <summaryXmlFile>true</summaryXmlFile>
 <imageFormat>tif</imageFormat>
 <imageMethod>a</imageMethod>
 <fields>
 <output> <field>1.4</field> </output>

<output> <field>1.5</field> </output>
<output> <field>10.3</field> </output>

 <output> <field>10.4</field> </output>
<output> <field>20.5</field> </output>

Page 105 of 194

X9Utilities User Guide X9Ware LLC

<output> <field>20.10</field> </output>
<output> <field>31.10</field> </output>
<output> <field>31.5</field> <columnName>ItemAmount</columnName></output>
<output> <field>MicrRouting</field> </output>
<output> <field>31.11</field> </output>
<output> <field>33.3</field> </output>
<output> <field>31.4</field> </output>
<output> <field>32.3</field> </output>
<output> <field>32.4</field> </output>
<output> <field>32.8</field> </output>
<output> <field>50.3</field> </output>
<output> <field>ReturnReason</field> </output>
<output> <field>FrontImage</field> </output>
<output> <field>BackImage</field> </output>

 </fields>
 </format>
 </formats>
</exportCsv>

Sample ExportCsv Output File
ImmediateDestinationRoutingNumber,ImmediateOriginRoutingNumber,DestinationRoutingNumber,ECEInstitutionRoutingNumber
,BundleBusinessDate,ReturnLocationRoutingNumber,ECEInstitutionItemSequenceNumber,ItemAmount,MicrRouting,ExternalProc
essingCode,AuxiliaryOnus,MICROn-
Us,Amount,ECEInstitutionItemSequenceNumber,BankofFirstDepositRoutingNumber,BOFDBusiness(Endorsement)Date,PayeeNa
me,ImageCreatorRoutingNumber,ReturnReason,FrontImage,BackImage
123456780,123456780,123456780,123456780,20180809,123456780,44000000,00000100.00,057770930,,,20915353/111,00000100
.00,44000000,123456780,20180807,Cash,123456780,,"C:/Users/X9Ware5/Documents/x9_assist/images/Test
ICL_images/Bundle_000003/Image_000008_amount_10000_front.tif","C:/Users/X9Ware5/Documents/x9_assist/images/Test
ICL_images/Bundle_000003/Image_000010_amount_10000_back.tif"
123456780,123456780,123456780,123456780,20180809,123456780,44000001,00000100.02,087770706,,,29602722/112,00000100
.02,44000001,123456780,20180807,Cash,123456780,,"C:/Users/X9Ware5/Documents/x9_assist/images/Test
ICL_images/Bundle_000003/Image_000015_amount_10002_front.tif","C:/Users/X9Ware5/Documents/x9_assist/images/Test
ICL_images/Bundle_000003/Image_000017_amount_10002_back.tif"

Page 106 of 194

X9Utilities User Guide X9Ware LLC

ImportImport

Import reads a CSV file and then writes the individual data records to an output x9 file.

Import is the exact opposite of our Export tool. You can use Export output as Import input. You
should take a detailed look at the output CSV that is created by X9Assist Export using the records
and fields layout. This output layout is the input to Import.

Additionally, Import is utilized by our standard Make/Generate function to load the finalized x9.37
file, once all records and fields have been populated. As part of this overall process, Import has the
responsibility of drawing images from our templates. This is possible because Make/Generate
provides information within a “<<di>>" draw image string that instructs import as to how the
image should be drawn.

As a result of this, field 52.19 is populated in one of these two manners:
• a fully qualified image name, enclosed in quote marks, with forward file separators;
• or a <<di>> string that directs import to draw an image from a template.

A typical <<di>> string is formatted as follows:

<<di|amount=20518|language=English|format=business3|na=[default]|na=[default]|
na=[default]|na=[default]|micr=C18*459C A017770019A 34450778C
B0000020518B|serial=18459|payee=Test Transaction|memo=ISN: 44000020|
bank=[default]|signature=[default]>>

In the above example, the default values are assigned from the X9Assist options xml file. We
would recommend that you do not do that, but instead provide explicit values for all fields.

Command line options

Switch Description

-awx Abort when the selected output file already exists. The default action is to allow output
files to be overwritten. Setting switch -awx will force an abort instead of overwriting
the existing file.

-config: Use a specific x9 configuration which defaults to “x9.37". For example, this parameter
could be specified as “-config:x9.37" or “-config:x9.100-187-2008".

-r X9 totals will be automatically recalculated and replaced in the output x9 file. All
incoming totals in those trailer records will be ignored.

-j A summary JSON file will be created with a suffix of “_summary.json" in the same
folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the same folder
as the output x9 file.

Page 107 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

-x A summary XML file will be created with a suffix of “_summary.xml" in the same
folder as the output x9 file.

-l Will list all x9 records to the system log.

-dpi: Assigns the output image dpi used to draw images, with a default of 240. Assigned
values must be either 200 or 240.

-batch Invokes batch (folder based processing; see that earlier topic for more information.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to easily
repeat an X9Assist task directly in X9Utilities batch.

Command line examples

x9util -import <input.csv>

reads <input.csv> and creates file <input.x937> within the designated input folder.

x9util -import <input.csv> <output.x937>

reads <input.csv> and creates file <output.x937> within the designated output folder.

x9util -import <input.csv> <output.x937> <imageFolder>

reads <input.csv> and creates file <output.x937> within the designated output folder using
images from <imageFolder> as needed and only when relative image file names are
present.

x9util -import -x <input.csv> <output.x937>

reads <input.csv> and creates file <output.x937> within the designated output folder. A
summary XML file will be created.

x9util -import -j <input.csv> <output.x937>

reads <input.csv> and creates file <output.x937> within the designated output folder. A
summary JSON file will be created.

Excessive Field Sizes

Import will set an exit status of 3 if there are any fields that have been assigned values that exceed
their maximum defined size, per the x9.37 standards. An example would be an attempt to assign
MICR OnUs with a 22 character value, or MICR AuxOnUs a 17 character value. In these
situations, the input values will be truncated and the error condition included in the system log,
along with the assigned exit status.

Page 108 of 194

X9Utilities User Guide X9Ware LLC

ValidateValidate

Validate reads an x9 file in industry defined formats and applies x9 data and image validations
against the parsed records. Identified validation errors are written to an output CSV file.

The x9 configuration which is used for the validation process is provided on the command line.
Since field level validations can vary widely across the various x9 specifications, the errors that are
identified can vary substantially subject to which x9 specification is applied to the file. Generally,
the x9.37 specification is the most lenient of standards, which means that it will generate the
fewest number of errors against any given file. However, when running a validation, you need to
consider and apply the specific x9 configuration which best meets your application requirements.

See topic “Supported x9 Configurations" for configurations that are supported by validate.

Command line switches (parameters) are used to further control the Validate operation. By default,
the x9.37 rules will be applied to the x9 file during validation. However, you can also use a
command line switch to apply an alternate x9 configuration for the validation process.

Command line options

Switch Description

-awx Abort when the selected output file already exists. The default action is to allow output
files to be overwritten. Setting switch -awx will force an abort instead of overwriting
the existing file.

-config: Use a specific x9 configuration. When this parameters is omitted, the file header will
be inspected to determine the most appropriate x9 configuration to be used. However,
you may also provide a specific “-config:" value. For example, this parameter could be
specified as “-config:x9.37" or “-config:x9.100-187-2008".

-j A summary JSON file will be created with a suffix of “_summary.json" in the same
folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the same folder
as the input x9 file.

-x A summary XML file will be created with a suffix of “_summary.xml" in the same
folder as the input x9 file.

-l Will list all x9 records to the system log.

-batch Invokes batch (folder based processing; see that earlier topic for more information.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to easily
repeat an X9Assist task directly in X9Utilities batch.

Page 109 of 194

X9Utilities User Guide X9Ware LLC

Command line examples

x9util -validate <input.x937>

validates <input.x937> and creates error file <input.csv> within the designated input folder.

x9util -validate <input.x937> <output.csv>

validates <input.x937> and creates error file <output.csv> within the designated output
folder.

x9util -x -validate <input.x937> <output.csv>

validates <input.x937> and creates error file <output.csv> within the designated output
folder. A summary XML file will be created.

x9util -j -validate <input.x937> <output.csv>

validates <input.x937> and creates error file <output.csv> within the designated output
folder. A summary JSON file will be created.

Exit status

Validate will set the overall run exit status as follows:
• -3 = input file not found
• -2 = invalid function
• -1 = aborted
• 0 = run successfully with no errors
• 1 = run successfully with informational message(s)
• 2 = run successfully with warning message(s)
• 3 = run successfully with error message(s)
• 4 = run successfully with severe error message(s)

Error File Columns

The output csv error file contains the following columns:

Column Content Notes

1 X9 record number Record number within the x9 file where the error occurred.

2 Record type X9 record type or 8888 if the error is related to an image
within a type 52 record.

3 Field number X9 field number or 9999 if the error.

4 Field name Field name associated with the error.

5 Error name Internally assign error name. A complete list of all errors can
be found in /xml/messages/messages.xml. Be advised that that

Page 110 of 194

X9Utilities User Guide X9Ware LLC

Column Content Notes

error messages and potentially their names can change from
release to release of the SDK.

6 Error severity Error severity (severe, error, warn, or info).

7 Message text Error message text.

8 Supplemental Information Supplemental information concerning this specific error.

Error File example
1,1,14,"Reserved","reservedMustBeBlank",2,"Reserved field must be blank per current x9 rules; invalid character(1)","invalid
character(1)"
10,8888,278,"RowsPerStrip","tiffMultiStripImagesNotAllowed",3,"Tiff multi-strip images are not allowed; number of
strips(83.375) tag(278) typeString(SHORT_LONG) type(13) count(1) rule(tag278RowsPerStrip)","number of strips(83.375)
tag(278) typeString(SHORT_LONG) type(13) count(1) rule(tag278RowsPerStrip)"
15,8888,282,"xResolution","tiffDPIisIncorrectPerRules",1,"Tiff image DPI (dots per inch) is incorrect per xml rules;
xDpiValue(220) tag(282) typeString(RATIONAL) type(5) count(1) value(=200|240)","xDpiValue(220) tag(282)
typeString(RATIONAL) type(5) count(1) value(=200|240)"
15,8888,283,"yResolution","tiffDPIisIncorrectPerRules",1,"Tiff image DPI (dots per inch) is incorrect per xml rules;
yDpiValue(220) tag(283) typeString(RATIONAL) type(5) count(1) value(=200|240)","yDpiValue(220) tag(283)
typeString(RATIONAL) type(5) count(1) value(=200|240)"
17,8888,282,"xResolution","tiffDPIisIncorrectPerRules",1,"Tiff image DPI (dots per inch) is incorrect per xml rules;
xDpiValue(220) tag(282) typeString(RATIONAL) type(5) count(1) value(=200|240)","xDpiValue(220) tag(282)
typeString(RATIONAL) type(5) count(1) value(=200|240)"
17,8888,283,"yResolution","tiffDPIisIncorrectPerRules",1,"Tiff image DPI (dots per inch) is incorrect per xml rules;
yDpiValue(220) tag(283) typeString(RATIONAL) type(5) count(1) value(=200|240)","yDpiValue(220) tag(283)
typeString(RATIONAL) type(5) count(1) value(=200|240)"
22,8888,9999,"End of Facsimile Block","tiffImageSegmentDoesNotEndEofb",3,"Tiff image segment does not end with EOFB; end
of image segment(888888FFFFFFFFFFFFC0040000)","end of image segment(888888FFFFFFFFFFFFC0040000)"
24,8888,9999,"End of Facsimile Block","tiffImageSegmentDoesNotEndEofb",3,"Tiff image segment does not end with EOFB; end
of image segment(1FFFFFFFFFFFFFFFFFFE002000)","end of image segment(1FFFFFFFFFFFFFFFFFFE002000)"
29,8888,256,"ImageWidth","tiffWidthGreaterThanMaximum",1,"Tiff image width greater than maximum inches; width(11.0)
greater than maximum(10.5)","width(11.0) greater than maximum(10.5)"
31,8888,256,"ImageWidth","tiffWidthGreaterThanMaximum",1,"Tiff image width greater than maximum inches; width(11.0)
greater than maximum(10.5)","width(11.0) greater than maximum(10.5)"
4,25,13,"Check Detail Record Addendum Count","endorsementAddendumCountIncorrect",1,"Endorsement count does not agree
with addenda present; value(3) expecting(2)","value(3) expecting(2)"
694,8888,0,"Image Header","tiffMoreThanOneImage",1,"Tiff contains more than one image",
701,8888,0,"Image Header","tiffImageNot49Or4d",1,"Tiff image invalid; does not begin 0x49492a00 or 0x4d4d002a; invalid
endian identifier(0x0000)","invalid endian identifier(0x0000)"
703,8888,0,"Image Header","tiffImageNot49Or4d",1,"Tiff image invalid; does not begin 0x49492a00 or 0x4d4d002a; invalid
endian identifier(0x0000)","invalid endian identifier(0x0000)"
706,99,7,"Immediate Origin Contact Phone Number","notNumeric",1,"Not numeric; editRuleFailed(n)","editRuleFailed(n)"
8,8888,278,"RowsPerStrip","tiffMultiStripImagesNotAllowed",3,"Tiff multi-strip images are not allowed; number of strips(83.375)
tag(278) typeString(SHORT_LONG) type(13) count(1) rule(tag278RowsPerStrip)","number of strips(83.375) tag(278)
typeString(SHORT_LONG) type(13) count(1) rule(tag278RowsPerStrip)"

Custom Rules

Validation of x9.37 files is complicated by several factors. There are several standards, so the
validation must invoke the proper standard for the input file. This is not an issue when a single
standard is being used for all processing. However, if multiple standards can be accepted, then
selection of the standard can be a more complicated issue. This assignment can be made subject to

Page 111 of 194

X9Utilities User Guide X9Ware LLC

the source of the file. Another alternative is allows validation to automatically choose the
validation rules, which can be selected using -config:auto.

Validation is further complicated by the fact that standards are loosely implemented by many
originators, which results in processors accepting many files that have minor validation errors.
This makes the process of accepting files based on validation results very difficult, since the reality
is that most organizations will need to accept files that contain certain types of errors.

Once a decision is made to validate files, you will then need an approach to determine which
validation errors are immaterial versus critical. This ultimately comes down to a filtering process
that must be applied against the errors that are thrown by validation. There are several ways this
can be accomplished:

• Develop your own list of the errors to be filtered (ignored) using the error name. You can
add to this list based the experience gained from your own testing. Error names are
displayed by X9Assist, so you can use our desktop software to validate files within your
environment, as you build this list. This is the most controllable design.

• Use the X9Assist Message Editor to build a custom message file. The Message Editor
constructs an override file which is applied to the standard message set. The severity of
messages can be reduced from error to warn, info, or even ignore. By reducing the severity
associated with specific errors, you can ultimately use the exit status to make your decision
as to whether a file passes your minimum validation requirements. You will also need to
use the X9Assist Configuration Editor to build your own configuration that includes your
custom message set.

• Use the X9Assist Rules Editor to build a custom set of validation rules. The rules editor
constructs either a rules definition that can either be a basis or extension. A basis is a
complete set of rules, while an extension is an override to an existing basis rule set. When
creating custom rules, you will also need to use the X9Assist Configuration Editor to build
your own configuration that references your custom rules definition. Be advised that the
process of building custom rules is an advanced topic.

Page 112 of 194

X9Utilities User Guide X9Ware LLC

QualifyQualify

Qualify is used to run tiff validations against either a list of images provided via a CSV file, or a
folder of images (which can be a folder of folders) using the same validations that are performed
by our other tools such as X9Assist/X9Validator and the Tiff Tester. Qualify allows you to
determine if your bitonal black-white TIFF images are compliant with the x9.100-181 exchange
standards. Qualify can optionally repair those images that are determined to be non-compliant. An
output CSV is created that contains a single line for each image processed, where the CSV
identifies actions taken for each input image. When running with image repair, you must provide
the output folder where the image repaired images will be written.

Qualify is designed to validate free-standing tiff images that are not embedded within an x9.37 file.
By analyzing and repairing images prior to creating your x9.37 file, you can ensure that the images
you ultimately insert into your image cash letters are x9.100-181 compliant, which greatly reduces
the potential for returned items. Qualify is designed to process a small quantity of images as well
as bulk processing of a very large number of items. Qualify is implemented as multi-threaded,
which allows it to maximize processor (CPU) usage and minimize overall elapsed time. You can
run tens of thousands of images through a single execution.

Qualify requires that you provide a configuration (-config: on the command line) that defines the
rules that will be used to perform image validations. An example is -config:x9.37. By specifying
the x9 configuration, you can ensure that you are applying the same tiff validation rules as you
would be using with X9Assist. These rules will provide a variety of validations such as tiff tags,
multi-strip, EOFB validation, and so forth. If you have specific image validation requirements to
be applied, you can create your own tiffRules.xml and then incorporate those into a custom
configuration using the Configuration Editor. Refer to that topic within this user guide as well as
relevant help videos on our website.

Input Images from CSV or Folders

The input to qualify can be either an input CSV file which contains a list of the images to be
processed, or it can be a folder that directly contains those images. When the input is a folder, the
“-sf” switch can be optionally provided to indicate that the subfolders within the input folder
should also be selected. When the input is a csv file, each line must contain two columns which are
separated by a comma. The first columns must contain “image” and the second column must
contain the image file name. Note that the file name should typically be enclosed within quote
marks given that it may have embedded spaces.

Output CSV format

The output CSV identifies the input images that are processed along with actions that have been
taken for each. The -weo switch can be used to limit the output csv to only those images that
contain validation errors (accepted images will not be written). Columns are as follow:

• Input image file name
• Inspection message

Page 113 of 194

X9Utilities User Guide X9Ware LLC

• Action message
• Repaired image file name (written to the output image folder)
• Image processing time in micro-seconds

Exit status

Validate will set the overall run exit status as follows:
• -3 = input file not found
• -2 = invalid function
• -1 = aborted
• 0 = run successfully with no image repairs
• 1 = run successfully with image repairs applied

Command line options

Switch Description

-awx Abort when the selected output file already exists. The default action is to
allow output files to be overwritten. Setting switch -awx will force an abort
instead of overwriting the existing file.

-config: Use a specific x9 configuration. When this parameters is omitted, the file
header will be inspected to determine the most appropriate x9 configuration
to be used. However, you may also provide a specific “-config:" value. For
example, this parameter could be specified as “-config:x9.37" or “-
config:x9.100-187-2008".

-sf Indicates that subfolders (within the image folder) should be included.

-exti:"x1|x2|x3|..." Provides a list of one or more file extensions that identify image files within
the image folder to be selected for qualify. Images that do not match these
extensions will be bypassed and not selected. Extensions are separated using
the pipe character. Usage examples are -exti:tif and -exti:“tif|tiff".
Specifying a value of -exti:* will accept all extensions and is the default on
Linux/OSX, etc. Note that quote marks are needed around this parameter
due to the embedded “|" special character.

-imageRepairEnabled Enables automated image repair; this function is disabled by default.

-imageResizeEnabled Enables both automated image repair including automated image resize;
these functions are disabled by default.

-ic The output image folder for this run will be cleared when it already exists.
This process will only remove files with commonly used image extensions.

-ipof: Defines the number of images written within each subfolder that is created
within the output “imageFolder". Default is 1000. For example, a switch
value of -ipof:500 will create new image subfolders every 500 items. A
value of zero indicates that subfolders should not be created within the
“imageFolder".

-ia Override to forcibly not abort when the output image folder is not empty.

Page 114 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

-weo Indicates that only image errors are written to the csv output file.

-j A summary JSON file will be created with a suffix of “_summary.json" in
the same folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the
same folder as the output CSV file.

-x A summary XML file will be created with a suffix of “_summary.xml" in the
same folder as the output CSV file.

-l Will list all csv lines to the system log.

-batch Invokes batch (folder based processing; see that earlier topic for more
information.

-workUnit: Assigns command line parameters and files from an xml file that was
previously created and saved by the X9Utilities facility within X9Assist.
This allows you to easily repeat an X9Assist task directly in X9Utilities
batch.

Command line examples

x9util -qualify <inputFileOrFolder> <output.csv>

qualifies images located within <inputFile> or <inputFolder> and creates <output.csv>
with associated images written to folder <output_IMAGES> within the designated output
folder.

x9util -qualify <inputFileOrFolder> <output.csv> <outputImageFolder>

qualifies images located within <inputFile> or <inputFolder> and creates <output.csv>
with associated images written to folder <outputImageFolder>.

x9util -qualify -sf -ic -ipof:0 -ia -awx <inputFileOrFolder> <output.csv> <outputImageFolder>

qualifies images located within <inputFile> or <inputFolder> and creates <output.csv>
with associated images written to folder <outputImageFolder>. Sub-folders within the
input image folder will be scanned. The output image folder will be cleared. No sub-folders
will be created in the output image folder. Qualify will abort if the output image folder is
not empty. Qualify will abort if the output csv file already exists.

Sample CSV output file
c:\Users\X9Ware5\Documents\x9_assist\files\qualify\qualify_input\image1.tif,"accepted - 6134 240
1488 672 6.20 2.80",,,545
c:\Users\X9Ware5\Documents\x9_assist\files\qualify\qualify_input\image2.tif,"accepted - 6586 240
1488 672 6.20 2.80",,,19962
c:\Users\X9Ware5\Documents\x9_assist\files\qualify\qualify_input\image3.tif,"accepted - 6602 240
1488 672 6.20 2.80",,,419

Page 115 of 194

X9Utilities User Guide X9Ware LLC

c:\Users\X9Ware5\Documents\x9_assist\files\qualify\qualify_input\image4.tif,"error - Tiff multi-
strip images are not allowed number of strips(83.375) tag(278) typeString(SHORT_LONG) type(13)
count(1) rule(tag278RowsPerStrip)","repaired(true) outputLength(4894) change(-2598)
imageFormat(tif) xdpi(240) ydpi(240) drawDpi(240) width(1488) height(660) imageType(12)
inputLength(7492) finalWidth(1488) finalHeight(660) widthInInches(6.2) heightInInches(2.75)
resized(false)",c:\Users\X9Ware5\Documents\x9_assist\files\qualify\qualify_output\bundle_000001\
image4.tif,122564
c:\Users\X9Ware5\Documents\x9_assist\files\qualify\qualify_input\image5.tif,"error - Tiff tag
type must be short tag(266) typeString(SHORT) type(3) count(1) expectedValues(=1|2)
allowedVariance(=2)","repaired(true) outputLength(9818) change(-193) imageFormat(tif) xdpi(240)
ydpi(240) drawDpi(240) width(1888) height(784) imageType(12) inputLength(10011) finalWidth(1888)
finalHeight(784) widthInInches(7.866667) heightInInches(3.2666667) resized(false)",c:\Users\
X9Ware5\Documents\x9_assist\files\qualify\qualify_output\bundle_000001\image5.tif,144443
c:\Users\X9Ware5\Documents\x9_assist\files\qualify\qualify_input\image6.tif,"error - Tiff multi-
strip images are not allowed number of strips(10.25) tag(278) typeString(SHORT_LONG) type(13)
count(1) rule(tag278RowsPerStrip)","repaired(true) outputLength(5232) change(-400)
imageFormat(tif) xdpi(240) ydpi(240) drawDpi(240) width(1440) height(593) imageType(12)
inputLength(5632) finalWidth(1440) finalHeight(593) widthInInches(6.0) heightInInches(2.4708333)
resized(false)",c:\Users\X9Ware5\Documents\x9_assist\files\qualify\qualify_output\bundle_000001\
image6.tif,108083
c:\Users\X9Ware5\Documents\x9_assist\files\qualify\qualify_input\image7.tif,"error - Tiff value
incorrect tiffTagValue(8) tag(258) typeString(SHORT) type(3) count(1)
expectedValues(=1)","repaired(true) outputLength(5747) change(-11325) imageFormat(tif) xdpi(72)
ydpi(72) drawDpi(200) width(1488) height(672) imageType(10) inputLength(17072); < rescaled width
factor(2.8115647) finalWidth(1470) finalHeight(664) widthInInches(7.35) heightInInches(3.32)
resized(true); resized with new width(1470) height(664) widthInInches(7.35)
heightInInches(3.32)",c:\Users\X9Ware5\Documents\x9_assist\files\qualify\qualify_output\
bundle_000001\image7.tif,214793

Page 116 of 194

X9Utilities User Guide X9Ware LLC

MakeMake

Make reads an input use case file and applies our standard Make/Generate process (as
implemented in X9Assist) to manufacture an output x9 file. X9Utilities -make can process against
either CSV or Excel use case files, just like our X9Assist desktop product.

The x9 configuration which is used by Make can be provided either in the generator xml or
alternatively on the command line. The initial assignment is made using the generator, since that
follows the same procedure implemented within X9Assist.

In a similar fashion, the routing list file that is used by Make can be provided either in the
generator xml or alternatively on the command line. The initial assignment is made using the
generator, since that follows the same procedure implemented within X9Assist.

See topic “Supported x9 Configurations" for configurations that are supported by Make.

Make requires actual dates which are used to populate various fields in the output x9 file. These
date related parameters can be defined explicitly within the generator, or can be refreshed based on
the current date. This is the same funtionality as provided by X9Assist Make. When date values are
provided, they must be in YYYYMMDD format. The associated generator fields are:

• Boolean dateRefresh = true;
• Date businessDate;
• Date createDate;
• Integer createTime = X9GenerateXml937.DEFAULT_TIME;
• Date itemStartDate;
• Date itemEndDate;
• Date primaryAddendumDate;
• Date secondaryAddendumDate;

Command line switches (parameters) are used to further control the Validate operation. By default,
the x9.37 rules will be applied to the x9 file during validation. However, you can also use a
command line switch to apply an alternate x9 configuration for the validation process.

Command line options

Switch Description

-reformatter The fully qualified file name of the reformatter xml definition to be loaded.

-generator The fully qualified file name of the generator xml definition to be loaded.

-awx Abort when the selected output file already exists. The default action is to allow output
files to be overwritten. Setting switch -awx will force an abort instead of overwriting
the existing file.

-config: Use a specific x9 configuration. When this parameters is omitted, the file header will
be inspected to determine the most appropriate x9 configuration to be used. However,

Page 117 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

you may also provide a specific “-config:" value. For example, this parameter could be
specified as “-config:x9.37" or “-config:x9.100-187-2008".

-j A summary JSON file will be created with a suffix of “_summary.json" in the same
folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the same folder
as the input x9 file.

-x A summary XML file will be created with a suffix of “_summary.xml" in the same
folder as the input x9 file.

-l Will list all x9 records to the system log.

-batch Invokes batch (folder based processing; see that earlier topic for more information.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to easily
repeat an X9Assist task directly in X9Utilities batch.

Command line examples

x9util -make -j -reformatter:"reformatter.xml" -generator:"generator.xml"
<useCases.csv> <output.x9>

runs make/generate with your reformatter, generator, and use case input file, to create the
designated output file. The routing list to be used by Make must be defined in the generator.

x9util -make -j -reformatter:"reformatter.xml" -generator:"generator.xml"
<useCases.csv> <routingList.csv> <output.x9>

runs make/generate with your reformatter, generator, use case input file, and routing list csv
file, to create the designated output file.

Exit status

Make will set the overall run exit status as follows:
• -3 = input file not found
• -2 = invalid function
• -1 = aborted
• 0 = run successfully with no errors

Page 118 of 194

X9Utilities User Guide X9Ware LLC

MergeMerge

Merge combines one or more x9 input files into x9 output file(s). Merge is a robust process which
can be run against a potentially large number of input x9 files. Eligible input files are selected from
an input “landing zone" which is identified on the command line. Merge is designed to be run
periodically against the landing zone, most probably as a scheduled task, where all current content
of the input folder will be merged into one or more output x9 files. In support of that design, merge
operates in the following manner:

• The landing zone can contain files, folders, or a combination of files and folders. Merge
selects files from the input folder based on extension to identify candidate files that are to
be merged. Merge can also optionally drill down into subfolders (using the “sf" command
line switch). This implementation is essentially can be based on folder of folders, which
allows the landing zone to be organized as needed to control the incoming files based on
your requirements and to keep the number of files within folders to a reasonable level.

• The input folder command line parameter identifies the location of the landing zone. The
folder name should be specified as a quoted string using forward slash separators.
Backslashes are not recommended since they are part of an ESCAPE character sequence
and can be unexpectedly ignored. The folder name should not end with the separator
character. We highly recommend enclosing the input folder within quote “ marks, which
are mandatory when the folder name contain embedded blanks.

• Merge has a command line option to operate at either the cash letter or bundle levels. When
merging at the cash letter level, output x9 files will contain the complete cash letters from
each of the input files. When merging at the bundle level, output x9 files will contain a
single cash letter. Regardless of which option is selected, bundles are always copied in their
entirety from input to output.

• A maximum file size must be defined for the output files to be created (default is 800MB).
One or more output files will be created from each merge run. The command line provides
the output x9 pattern name which is then suffixed with a sequential number for each file
that is written by the merge.

• Input files which are successfully copied into the merged output can be optionally renamed
to a new file extension on completion. This rename allows the file to be excluded from a
future merge operation.

• Input files which are failed (they could not be copied into the merged output file) can be
optionally renamed to a new file extension on completion. This rename allows the file to be
clearly marked as failed for exception processing and will also exclude them from a future
merge operation.

• Input files are typically only selected for the merge when they end in a type 99 file trailer,
since the lack of a file trailer is a structural issue which means that either the file is in the
process of being transmitted to the input folder, or that they are flawed. In either case, files
without type 99 file trailers would always be excluded from a merge.

• Input files that were recently created can be further bypassed from one merge operation and
thus deferred to the next scheduled run, with the intent to skip over files that may be
actively transmitted. This skip interval can be set via the command line and defaults to 60
seconds.

Page 119 of 194

X9Utilities User Guide X9Ware LLC

• Output files are initially created as TEMP and are renamed to their final names on the
ultimate completion of the merge. These renames are performed at the end of the merge, for
all output files that were created by the merge run, and before the individual files are
renamed to their merged extension.

Landing Zone Batch Script

Merge would typically be run from a batch script that would be periodically invoked by a
scheduler. Part of this batch script would send an email if certain embedded functions are
determined to be failed. The origination of this email can be done directly from Windows
PowerShell but can also be done using tools such as SwithMail, CMail, SendSMTP, Blat,
MailSend, SendEmail, or Send-It_Quietly. We would suggest writing a separate notification batch
script that can be invoked with the failed message needs to be sent. The merge batch script would
perform the following basic functions:

• Zip the landing zone contents to an external backup folder using an output file name that is
fully date-time stamped. This zip file would be used on an exception basis for either
research or to allow this merge operation to be completely rerun should that be needed. The
backup is needed since it is assumed that the content of the landing zone will be a constant
state of change hence a snapshot backup is required.

• Abort if this zip was unsuccessful.
• Run the merge using options to rename both merged and failed files.
• Abort if the exit status posted by merge is negative.
• Zip all files which were renamed to “merged" to a backup file in an external folder using a

file name that is fully date-time stamped. This zip file is used for archive purposes and
represents all files that were merged in this run.

• Abort if this zip was unsuccessful.
• Delete all files that were renamed to “merged" since they have now been written to the

archive zip file.
• Abort if this delete was unsuccessful.
• Send an email if the merge exit status indicates that the landing zone contains failed files.

This will be true if the failed files either existed prior to the merge run or were actually
created by this specific merge run.

• Otherwise all is successful.

Landing Zone Watcher Script

Merge can have an optional watcher script that can be scheduled to monitor the merge process. The
purpose of the watcher script is to be run independently and to ensure that the merge is running
periodically as expected. The “utsf" merge option can be used to update a time stamp file within
the landing zone for each independently scheduled run of merge (this update is one of the very last
steps of the merge processing run). Because of that, the last modified date-time of the time stamp
file is a good indication that a merge has completed. Suppose that merge is running on the hour. If
that is the case, then the watcher task can be run on the half hour and can send an email alert if the
merge time stamp file has not been updated as expected (for example, the time stamp is more than
60 minutes old).

Page 120 of 194

X9Utilities User Guide X9Ware LLC

Command line options

Switch Description

-exti:"x1|x2|x3|..." Provides a list of one or more file extensions that identify x9 files
within the input folder to be selected for merge. Files that do not
match these extensions will be bypassed and not selected.
Extensions are separated using the pipe character. Usage examples
are -exti:x9 and -exti:“x9|x937". Specifying a value of -exti:* will
accept all extensions and is the default on Linux/OSX, etc. Note
that quote marks are needed around this parameter due to the
embedded “|" special character.

-extr:merged Indicates the file extension to be used for processed file renames.
Processed files will not be renamed when no extension is provided.

-extf:failed Indicates the file extension to be used for failed file renames.
Failed files will not be renamed when no extension is provided.

-max:nnnn Controls the maximum file size for each output file in MB. When
this facility is activated, each output file will be named using a
suffix beginning at 1 (outputFile_1.x9, outputFile_2.x9, etc).
Default maximum file size (when not specified) is 800MB. This
limit can be set to zero for unlimited file size, and in that situation
file suffixes are not assigned. A value of “900mb" would be
provided to override the maximum file size to 900mb. This same
value could alternatively be specified as “921600kb". When the
maximum limit is being controlled based on items (and not bytes),
the maximum might be assigned as “10000" or “20000".

-creditsAddToItemCount:true Indicates that credits are added to trailer item counts. The value
can be assigned as either true or false.

-creditsAddToItemAmount:true Indicates that credits are added to trailer item amounts. The value
can be assigned as either true or false.

-creditsAddtoImageCount:true Indicates that credits are added to trailer image counts. The value
can be assigned as either true or false.

-mrgb Indicates that the merge should be run at the bundle level, which
means that the output will contain a single cash letter. Default is
false.

-modb Indicates that the bundle origination and destination routing
numbers should be modified to match the cash letter header, as
required by various x9 specifications. Default is false.

-gbn Indicates that the input files should be grouped (resequenced)
using their logical file name. This is the default when no other
sequencing has been specified.

-gbs Indicates that the selected input files should be grouped
(resequenced) by their total file size in bytes.

Page 121 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

-gbc Indicates that the input files should be grouped (resequenced) by
item count.

-sd Indicates that the input files should be sorted descending on their
control factor (size or items). This can reduce the number of output
files when a large number of files are being created, since it
increases the potential to group more files during the merge.

-sf Indicates that subfolders (within the input folder) should be
included.

-select:"[1.nn]match-string" Indicates that matching should be applied against the type 01 file
header record. This facility allows the input to be filtered, with
only matching files selected for the merge. Files that do not match
(those that are not selected) are excluded and are untouched by this
merge (they will not be renamed, etc). This facility allows you to
run several consecutive merge operations against the same folder,
where each picks up their appropriate files. The format of the
match string is that same as used by -split, so refer to that
documentation for more information. The nn value indicates the
field within the file header to be matched against. For example,
[1.4] would match against the Immediate Destination Number. A
match string of -select:"[1.4]=123456780" would select that
specific routing, while -select:"[1.4]^12.*" is a regex comparison
that would select the 12th district.

-skpi:nnn Indicates a number of seconds that is compared against each
individual file creation time and is used to bypass files that are
very recently created within the input folder and may be in the
process of being transmission. Files that do not meet this minimum
skip interval are considered as “in-progress" and will be bypassed.
Default value is 60.

-utsf:fileName.csv Indicates that the optional time stamp file should be created. The
time stamp file name will be defaulted to mergeTimeStamp.csv
when not provided via the switch setting. If a time stamp file name
is provided, it can be a base name or a fully qualified file name. If
only a base name is provided, then the file will be created in the
output folder.

-t99m Indicates that input files should be selected even when they do not
contain a type 99 file control trailer. This option would only be
enabled in very unusual merge situations.

-dnr Indicates that file renames are not to be performed on completion.
This switch is help helpful during testing since a merge test can be
run repetitively without the inputs being changed.

Page 122 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

-awx Abort when the selected output file already exists. The default
action is to allow output files to be overwritten. Setting switch -
awx will force an abort instead of overwriting the existing file.

-config: Use a specific x9 configuration which defaults to “x9.37". For
example, this parameter could be specified as “-config:x9.37" or “-
config:x9.100-187-2008".

-j A summary JSON file will be created with a suffix of
“_summary.json" in the same folder as the output x9 file.

-t A summary text file will be created with a suffix of
“_summary.txt" in the same folder as the input x9 file(s).

-x A summary XML file will be created with a suffix of
“_summary.xml" in the same folder as the input x9 file(s).

-l Will list all x9 records to the system log.

-batch Invokes batch (folder based processing; see that earlier topic for
more information.

-workUnit: Assigns command line parameters and files from an xml file that
was previously created and saved by the X9Utilities facility within
X9Assist. This allows you to easily repeat an X9Assist task
directly in X9Utilities batch.

Command line examples

x9util -merge -exti:x9 <inputFolder> <output.x937>

merges files within extension x9 within <inputFolder> to output files <output_#.937> with
all defaults applied and with no renames.

x9util -merge -exti:x9 -max 1400 <inputFolder> <output.x937>

merges files with extension x9 within <inputFolder> to output files <output_#.937> with a
maximum output file size of 1400MB and with no renames.

x9util -merge -j -exti:x9 -max 1400 -extr:merged -extf:failed <inputFolder> <output.x937>

merges files with extension x9 within <inputFolder> to output files <output_#.937> with a
maximum output file size of 1400MB. Merged files will be renamed to a new “merged"
extension and failed files will be renamed to a new “failed" extension. A summary JSON
file will be created.

x9util -merge -exti:x9 -max 1400 -extr:merged -extf:failed -skpi:120 -utsf <inputFolder>
<output.x937>

Page 123 of 194

X9Utilities User Guide X9Ware LLC

merges files with extension x9 within <inputFolder> to output files <output_#.937> with a
maximum output file size of 1400MB. Merged files will be renamed to a new “merged"
extension and failed files will be renamed to a new “failed" extension. Input files must exist
for a minimum of 120 seconds to be eligible for the merge. A time stamp file will be
created in the input folder to allow a watcher task to monitor executions.

Time Stamp file format

The time stamp file can be optionally created by providing the “-utsf" switch. This file is designed
to fulfill multiple purposes:

• A production process can monitor the last-modified date of the time stamp file (perhaps
from a scheduled task) to ensure that a continuous process is running as expected, and issue
alerts if the time stamp file becomes stale.

• Your application can extract information from the time stamp file for your own specific
purposes. It is written in CSV format to help facilitate that.

The time stamp file contains the actual time stamp value, an exit message, counters for this merge
operation, and detail lines which define each input file and the corresponding output it was written
to. The format is as follows:

Line 1 contains: “timeStamp", time stamp.

Line 2 contains: “exitMessage", exit message.

Line 3 contains: “statistics", exit status, merge count, rename count, successful file count,
failed file count, debit count, debit Amount, credit count, credit amount, cash letter count,
and bundle count.

Next lines contain information about failed files; this list will indicate failed,!!none!! when
there are no failed files; otherwise the format is: “failed", failed file name, failed reason

From this point forward, there will be a list of the output files that have been written, along
with a mapping of the input files that have been written to each of those files, where each
of these lines are formatted as follows: “output",output file number, output file name, input
file name, input file length, record count, debit count , debit amount, credit count, credit
amount, bundle count, micr valid amount, admin count , pre-note count, debit image count,
credit image count, debit reversal count, debit reversal amount, credit reversal count, credit
reversal amount, addenda count, cash letter count, hash total.

Exit status

Merge will set the overall run exit status as follows:
• -3 = input folder not found
• -2 = invalid function
• -1 = aborted
• 0 = run successfully with no errors

Page 124 of 194

X9Utilities User Guide X9Ware LLC

• 1 = run successfully with multiple files created
• 2 = run successfully with one or more failed files that exist in the input folder

Page 125 of 194

X9Utilities User Guide X9Ware LLC

CompareCompare

Compare is designed for regression test purposes to confirm that two x9 files are logically equal.
The content of both data and images will be compared. Compare has several benefits over a simple
binary compare of the two files:

• Compare requires that the items within the file be structured in the same logical order to
allow the matching process to remain aligned within the two files. Positioning is internally
maintained using record types and then additionally on the item amounts and item sequence
numbers. There are no other assumptions or requirements for the matching process. Any
missing or inserted items will be reported and optionally listed.

• Within each item, addenda records are compared and differences are reported. The number
of addenda records can be different and the compare will continue.

• Individual fields can be excluded from the comparison when their content is expected to be
different.

• As part of the comparison, text files are created which contain the actual data records
(excluding images) from the two files. These text files can be subsequently analyzed using
your choice of DIFF tools.

Command Line Options

Switch Description

-exclude Provides a list of one or more fields which are to be excluded from the comparison.
Usage examples are -exclude:"1.6|1.7|10.7". Note that quote marks are needed around
this parameter due to the embedded “|" special character.

-delete Deletes the records1 and records2 text files on completion.

-v Enables verbose mode which will list inserted and/or deleted records into the
comparison results.

-mask Enables masking of excluded fields in the text files which are created.

-awx Abort when the selected output file already exists. The default action is to allow output
files to be overwritten. Setting switch -awx will force an abort instead of overwriting
the existing file.

-config: Use a specific x9 configuration. When this parameters is omitted, the file header will
be inspected to determine the most appropriate x9 configuration to be used. However,
you may also provide a specific “-config:" value. For example, this parameter could be
specified as “-config:x9.37" or “-config:x9.100-187-2008".

-j A summary JSON file will be created with a suffix of “_summary.json" in the same
folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the same folder
as the primary x9 file and summarizes its content.

-x A summary XML file will be created with a suffix of “_summary.xml" in the same

Page 126 of 194

X9Utilities User Guide X9Ware LLC

Switch Description

folder as the primary x9 file and summarizes its content.

-batch Invokes batch (folder based processing; see that earlier topic for more information.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to easily
repeat an X9Assist task directly in X9Utilities batch.

Command line examples

x9util -compare -exclude:"1.6|1.7|10.7" -delete <primary.x937> <secondary.x937>

compares primary.x937 against secondary.x937 and creates output txt and csv files within
the primary file folder. Several fields are excluded from the comparison. The records1 and
records2 text files will be automatically deleted on completion.

x9util -compare -exclude:"1.6|1.7|10.7" -delete <primary.x937> <secondary.x937> <results.csv>

compares primary.x937 against secondary.x937 and creates output results.txt and
results.csv files (both located in the results file folder). Several fields are excluded from the
comparison. The records1 and records2 text files will be automatically deleted on
completion.

x9util -compare -j -exclude:"1.6|1.7|10.7" -delete <primary.x937> <secondary.x937> <output.txt>
<results.csv>

compares primary.x937 against secondary.x937 and creates output.txt and results.csv files.
Several fields are excluded from the comparison. The records1 and records2 text files will
be automatically deleted on completion. A summary JSON file will be created.

Exit status

Compare will set the overall run exit status as follows:
• -2 = invalid function
• -1 = aborted
• 0 = run successfully with no differences
• 1 = run successfully with unmasked differences

Page 127 of 194

X9Utilities User Guide X9Ware LLC

ScrubScrub

Scrub reads an x9 file in industry defined formats and applies user defined actions to remove
proprietary and confidential information from the input file creating a new output file.
In addition to the data fields, scrub can optionally apply replacement actions against the images
associated with each item. The actions to be performed can be saved in a user defined scrub
configuration file which is available for future reuse. Scrub has a standard list of available
cleansing actions that can be selected based on your specific requirements.

Scrub uses an xml parameter file to define the actions to be applied to the input file. This xml file
is created and testing using our X9Assist product where you can define and review these
parameters and repetitively test them against x9 files to ensure that they are providing desired
results. These xml definitions are stored by X9Assist in folder / Documents / x9_assist / xml /
scrub /. X9Assist allows you to create as many of these definitions as you need to perform your
desired scrub actions. The shared used of these xml parameter files between X9Assist and
X9Utilities is a key part of our design of these tools.

Command line options

Switch Description

-awx Abort when the selected output file already exists. The default action is to allow output
files to be overwritten. Setting switch -awx will force an abort instead of overwriting
the existing file.

-config: Use a specific x9 configuration. When this parameters is omitted, the file header will
be inspected to determine the most appropriate x9 configuration to be used. However,
you may also provide a specific “-config:" value. For example, this parameter could be
specified as “-config:x9.37" or “-config:x9.100-187-2008".

-exto: Defines the output extension to be assigned to the created output x9 file when that file
name is not explicitly specified on the command line; default is “new".

-j A summary JSON file will be created with a suffix of “_summary.json" in the same
folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the same folder
as the input x9 file.

-x A summary XML file will be created with a suffix of “_summary.xml" in the same
folder as the input x9 file.

-l Will list all x9 records to the system log.

-batch Invokes batch (folder based processing; see that earlier topic for more information.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to easily
repeat an X9Assist task directly in X9Utilities batch.

Page 128 of 194

X9Utilities User Guide X9Ware LLC

Command line examples

x9util -scrub <input.x937> <parameters.xml>

scrubs <input.x937> using options specified in <parameters.xml> and creates x9 file
<input.new> and <input.csv> within the designated input folder.

x9util -x -scrub <input.x937> <parameters.xml> <output.x937 >

scrubs <input.x937> using options specified in <parameters.xml> and creates x9 file
<output.x937 > and <output.csv> within the designated output folder. A summary XML file
will be created.

x9util -j -scrub <input.x937> <parameters.xml> <output.x937 >

scrubs <input.x937> using options specified in <parameters.xml> and creates x9 file
<output.x937 > and <output.csv> within the designated output folder. A summary JSON
file will be created.

Scrub results CSV File

Scrub creates an output CSV file which defines the input and output x9 files and then identifies
each field which has been scrubbed along with a counter of actions applied for that field. A sample
of the results file is as follows:

"c:\\users\\x9ware5\\documents\\x9_assist\\files_Utilities\\Test file with 2 checks.x9","c:\\
users\\x9ware5\\documents\\x9_assist\\files_Utilities\\Test file with 2 checks_TMP.new"
"Field 01.10 Immediate Origin name",1
"Field 01.11 File ID Modifier",1
"Field 01.6 File Creation Date",1
"Field 01.9 Immediate Destination name",1
"Field 10.11 Originator Contact Name",1
"Field 10.5 Cash Letter Business Date",1
"Field 10.6 Cash Letter Creation Date",1
"Field 20.5 Bundle Business Date",1
"Field 20.6 Bundle Creation Date",1
"Field 25.6 MICR On-Us",2
"Field 25.7 Amount",2
"Field 25.8 ECE Institution Item Sequence Number",2
"Field 26.4 BOFD Business (Endorsement) Date",2
"Field 26.5 BOFD Item Sequence Number",2
"Field 50.3 Image Creator Routing Number",4
"Field 50.4 Image Creator Date",4
"Field 52.19 image scrubs",4
"Field 52.3 Bundle Business Date",4
"Field 52.5 ECE Institution Item Sequence Number",4
"Field 90.6 ECE Institution Name",1

Page 129 of 194

X9Utilities User Guide X9Ware LLC

"Record type 70 trailers",1
"Record type 90 trailers",1
"Record type 99 trailers",1
"end"

Page 130 of 194

X9Utilities User Guide X9Ware LLC

ImagePullImagePull

ImagePull extracts images from a series of input x9 files driven by a user supplied pick list, which
identifies the specific items to be pulled. This function is designed to allow a large number of
images to be pulled in a single run across a large number of x9 files. Items are identified using an
input CSV file which is provided on the command line. Extracted images are written to an output
image folder in the same byte format as they are present on the input x9 file. There is no attempt to
either validate or transform the images. By default, front images will be written for each selected
item. Back side images can be enabled using a command line switch.

Input CSV

ImagePull reorganizes a user provided pick list by x9 file and then dispatches the image extraction
process to a series of background threads which are run in parallel. Pull requests can be either
specific or generic:

• Specific pull requests must include the item sequence number and can then also optionally
include the item amount and item date.

• Generic pull requests identify items using date, routing, account, and serial number.

In support of optimization, the input is restructured and reorganized internally, such that each x9
file will be read only once. When specific items are being pulled, the reading process for any
single file will be terminated when all requests for that individual file have been satisfied. This
means that most files will only be partially read, since input will end when the last needed item has
been encountered.

The item picklist is a CSV which is formatted with the following columns:

Column Presence Content Example

1 Mandatory Fully qualified x9 file name enclosed in
quotes and always using forward slash
as file separators, enclosed within quote
marks.

“c:/user/folder/fileName"

2 Optional Item sequence number for the item to
be pulled as identified on the type 25
(check) or type 31 (return) item.

44000001

3 Optional Item amount as a further qualifier for
the item to be pulled (specified as
numeric and without leading zeroes.

10000

4 Optional Date for items to be pulled; this date is
obtained from the capture date in the
type 50 front side image record.

20180620

5 Optional Account number for items to be pulled;
this number is obtained from the MICR

123456789

Page 131 of 194

file:///c:/user/folder/fileName

X9Utilities User Guide X9Ware LLC

Column Presence Content Example

OnUs field.

6 Optional Check serial number for items to be
pulled; this number is obtained from
either the OnUs or AuxOnUs fields.

123456789

Results CSV

A results CSV is created which identifies the images which have been extracted for each pull
request. The results CSV includes the fully qualified file name for each image as well as various
fields which are associated with the item group. The results CSV is written in the same sequence as
the input picklist, regardless of how the items had to be internally reorganized for the pull process.
The results CSV (by default) contains the following fields:

Column Field Name Content

1 x9fileName X9 file name as echoed from the pull request.

2 itemSequenceNumber Item sequence number as echoed from the pull request.

3 frontImage Fully qualified name of the extracted front image file.

4 backImage Fully qualified name of the extracted back image file.

5 recordType Record type for the selected item group.

6 RecordNumber Record number of the selected item group within the x9 file.

7 auxOnUs Auxiliary OnUs field from the item record.

8 epc External processing code from the item record.

9 payorRouting Payor routing from the item record.

10 payorRoutingCheckDigit Payor routing check digit from the item record.

11 onus OnUs from the item record.

12 amount Amount from the item record.

13 bofdIndicator BOFD indicator from the item record.

14 returnLocationRouting Return location routing number from the bundle header
record.

15 bofdDate BOFD from the first BOFD addendum record.

16 bofdRouting BOFD routing from the first BOFD addendum record.

17 imageCreatorRouting Image creator date from the first type 50 record.

18 imageCreatorDate Image creator date from the first type 50 record.

19 returnReason Return reason from the type 31 return record.

Page 132 of 194

X9Utilities User Guide X9Ware LLC

Extracted Image File Names

ImagePull will format the file name for each extracted images into a standardized and fully
qualified format that includes the complete file system path. In certain error situations, the image
file name is replaced by a constant string to identify a specific error condition as follows:

Error Image File Name Error Condition

"file-not-found" The x9 file associated with this picklist item was not found.

"item-not-found" The item was not found based on the provided criteria within the
identified x9 file.

"item-no-image" The item was found but did not have an attached image.

"file-aborted" An internal error occurred during the processing of the identified x9
file and the image is not available. More information on the error can
be found in the created system log.

Error CSV

An error CSV is created for each ImagePull run which identifies those items which could not be
pulled. The error CSV is always created and will be empty when there are no errors for a given
processing run. The error CSV is created in the output CSV folder with the same named appended
with “_ERRORS" (it is not explicitly named on the command line). This error CSV file can be
used to analyze why images were not pulled for specific items and can be used as input for a
subsequent ImagePull run should those error conditions be corrected. The format of the error CSV
file is as follows:

Column Field Name Content

1 x9fileName X9 file name as echoed from the pull request.

2 itemSequenceNumber Item sequence number as echoed from the pull request.

3 amount Amount from the item record.

4 CSV input line number Line number of this request on the input CSV request file.

5 error condition Description of error encountered for this error request.

XML parameter file

An XML parameter file can be optionally provided to control the fields that are written to the
output CSV file. When not provided, the output CSV will be created in our standard format with
all available fields. The XML parameter file can be used to limit the fields that are included or to
change the sequence of those fields. An example XML parameter definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<imagePull>
 <copyright>X9Ware LLC 2013 2014</copyright>
 <product>X9Assist</product>

Page 133 of 194

X9Utilities User Guide X9Ware LLC

 <release>R4.01</release>
 <build>2019.07.24</build>
 <fields>
 <name>x9fileName</name>
 <name>itemSequenceNumber</name>
 <name>amount</name>
 <name>frontImage</name>
 <name>backImage</name>
 </fields>
</imagePull>

Command line options

Switch Description

-config: Use a specific x9 configuration. When this parameters is omitted, the file header will
be inspected to determine the most appropriate x9 configuration to be used. However,
you may also provide a specific “-config:" value. For example, this parameter could be
specified as “-config:x9.37" or “-config:x9.100-187-2008".

-cr Include selection of images for record credit record type 61 and 62.

-ib Pull and write back side images; the default is to omit back side images.

-ix A time stamp (date and time) is appended to the output image folder name to make it
unique for each image pull run.

-ic The output image folder for this run will be cleared when it already exists. This process
will only remove TIFF files since those are the only file extensions which would be
expected to exist in the output image folder.

-ia Override to forcibly abort when the output image folder is not empty.

-l Will list all type 25 and type 31 x9 records to the system log.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to easily
repeat an X9Assist task directly in X9Utilities batch.

Command line examples

x9util -imagePull <input.csv>

pulls images using the picklist as provided in <input.csv>, creates output CSV
<input_RESULTS.csv> within the designated input folder, and writes images to
<input_IMAGES> within the designated input folder.

x9util -imagePull <input.csv> <results.csv>

pulls images using the picklist as d provided in <input.csv>, creates output <results.csv>,
and writes images to <input_IMAGES> within the designated input folder.

Page 134 of 194

X9Utilities User Guide X9Ware LLC

x9util -imagePull <input.csv> <results.csv> <imageFolder>

pulls images using the picklist as provided in <input.csv>, creates output <results.csv>, and
writes images to <imageFolder>.

x9util - imagePull <input.csv> <parameters.xml> <results.csv> <imageFolder>

pulls images using the picklist as provided in <input.csv> including the specific fields as
defined in <parameters.xml>. Creates <results.csv> with images written to <imageFolder>.
All four (4) command line files are required to prevent ambiguity. The parameter xml
identifies the fields to be included in the output CSV and the order that those fields will be
written. Fields are identified by name and must be selected from a list of system available
field names. Other command line formats (which do not include the parameters xml file)
will otherwise include all available output fields in a predetermined order.

Page 135 of 194

X9Utilities User Guide X9Ware LLC

UpdateUpdate

Update reads an existing x9 file in common industry defined formats and performs replacement
operations against one or more fields within the file. This process consists of searching for user
defined values within specific record types and fields and then replacing those values (when
found) with new data values in a newly created x9 file.

The match/replace data is provided in a user supplied update file (xml format) which is provided
via the command line.

Command line options

Switch Description

-awx Abort when the selected output file already exists. The default action is to allow
output files to be overwritten. Setting switch -awx will force an abort instead of
overwriting the existing file.

-config: Use a specific x9 configuration. When this parameters is omitted, the file header
will be inspected to determine the most appropriate x9 configuration to be used.
However, you may also provide a specific “-config:" value. For example, this
parameter could be specified as “-config:x9.37" or “-config:x9.100-187-2008".

-outExtension: The default x9 output file extension to be used which defaults to “new".

-j A summary JSON file will be created with a suffix of “_summary.json" in the same
folder as the output x9 file.

-t A summary text file will be created with a suffix of “_summary.txt" in the same
folder as the input x9 file.

-x A summary XML file will be created with a suffix of “_summary.xml" in the same
folder as the input x9 file.

-l Will list all x9 records to the system log.

-batch Invokes batch (folder based processing; see that earlier topic for more information.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to
easily repeat an X9Assist task directly in X9Utilities batch.

Command line examples

x9util -update <input.x937> <parameters.xml>

reads <input.x937> using update parameters defined in <parameters.xml> and creates x9
output file <input.new> and results file <input.csv> within the designated input folder.

x9util -update <input.x937> <parameters.xml> <output.x937>

Page 136 of 194

X9Utilities User Guide X9Ware LLC

reads <input.x937> using update parameters defined in <parameters.xml > and creates
output files <output.x937> and results file <output.csv> within the designated output
folder.

x9util -update <input.x937> <parameters.xml> <output.x937> <results.csv>

reads <input.x937> using update parameters defined in <parameters.xml> and creates
output file <output.x937> and results file <results.csv>.

x9util -j -update <input.x937> <parameters.xml> <output.x937> <results.csv>

reads <input.x937> using update parameters defined in <parameters.xml> and creates
output file <output.x937> and results file <results.csv>. A summary JSON file will be
created.

x9util -x -update <input.x937> <parameters.xml> <output.x937> <results.csv>

reads <input.x937> using update parameters defined in <parameters.xml> and creates
output file <output.x937> and results file <results.csv>. A summary XML file will be
created.

Update Results CSV File

Update creates a results CSV file that has one line for each field that is modified, serving as an
audit trail for the modifications that have been made. The columns for this file are as follows:

Column Content

1 Record number.

2 Record dot field that was updated.

3 Field name.

4 Old value

5 New value.

Constants

The update xml deck can include constants that are defined once and then repetitively reused.
These are defined in an optional “constants" section. Each constant is defined with a user defined
name, beginning and ending with %, and with an associated value that can subsequently be used
on a <replace>. For example, various records commonly use ECE Institution Routing as a logical
value. An example is as follows:

<constants>
<id>%ece-institution%</id> <value>123456780</value>

</constants>

Page 137 of 194

X9Utilities User Guide X9Ware LLC

Look Back to Previous Values

The update xml deck can assign the value to the current field based on values that were assigned to
an earlier record. For example, it might be desirable to assign field 52.2 (ECE Institution Routing
Number) with the same value as 10.4 (ECE Institution Routing Number). Look backs for an
earlier record type final value for that field (after possible updates are applied). Look backs for the
current record type assign the input value for that field, despite the fact that value may be
subsequently altered. Look backs are done using the record and field number. For example, the
string identifier for an input field look back for 10.4 would be 10.4, while the output field look
back would be 10.4. These identifiers are utilized within <replace>.

External Table Lookups

There are situations where a field needs to be updated using data that does not exist within the
current file. An example of this would be updating the payor deposit account number in fields 26.6
or 32.6, where the value needs to be assigned based on a lookup that is based on item sequence
number and item amount.

This type of lookup is applied utilizing a table that must be constructed by a user application.
Following the above example, the table might contain item sequence number and amount, to
provide the actual deposit account number. The table might appear as follows:

44000001/10002 88441
44000002/10004 88442
44000003/10006 88443

The table reference must include table name and one or more fields that are used to build the
lookup key. The table can be referenced through either an absolute (fully qualified) or relative file
name. If the table name is relative, then it must be defined in the same folder as the update xml file
itself. Following the above example, the <replace> value might be:

<replace>//table/accountLookupTable.txt/32.5/31.5

Update XML File Examples

The update xml deck allows specific fields within the input file to be inspected for one or more
values, which can then be replaced with a new target value. When searching for multiple values,
all existing input values can be mapped to the same or different replacement values.

The x9 rules unfortunately define separate routing and routing check digit fields for the payor
routing in record types 25 and 31. To facilitate replacement of those fields are considered
combined as a single nine-digit field for both the old and new values. This concatenation of data
applies only to those two specific situations.

Update contains <match> and <replace> parameters at the field level.

The <match> parameter supports a variety of search functions that can be used to identify the
values to be replaced. These are as follows:

Page 138 of 194

X9Utilities User Guide X9Ware LLC

• <match/> matches against blank values.
• <match>*</match> is a wild card that matches against any and all values.
• <match>=xx</match> searches for a specific value (in this case, xx).
• <match>=xx|yy|zz</match> searches for a list of specific values (in this case, xx, yy, zz).
• <match>regexString</match> matches against a user provided Java RegEx string. This is a

more advanced capability but also provides the most powerful matching capabilities.

The <replace> parameter provides the immediate replacement value when searching for specific
values. However, in the case of searches that are based on RegEx, the <replace> parameter instead
provides the replacement value for that portion of the input value that was successfully matched by
RegEx. Essentially, you need to picture the input value as containing three separate parts. First is a
series of leading characters, following by the portion that is matched by the RegEx string, and then
finally a series of trailing characters that follow the RegEx matched portion of the string. The
matched portion of the input stream will be replaced with the <replace> value. The leading and
trailing characters will be retained.

The XML file defines the fields to be queried, the match rules to be applied, and the replacement
value that will be assigned. An example is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<update>
 <constants/>
 <swaps>
 <swap>

 <field>1.9</field> <values> <match>*</match> <replace>Central</replace>
</values>
 </swap>
 <swap>

 <field>1.10</field> <values> <match>*</match> <replace>Central</replace>
</values>
 </swap>
 </swaps>
</update>

RegEx Online Tools

There are numerous Java RegEx online tools that can be used to develop your development of a
Java RegEx regular expression. These tools allow you to enter your expression and a
corresponding data string to test against. This interactive capability is invaluable during this work.
An example site is: https://regex101.com/ . When using these sites, make sure you identify the
HTML “flavor" being used as Java8. You will want to enter various input data to determine that
matching is working as expected. Also include some negative testing as well, to make sure that
other arbitrary data is not accepted as a match. One thing nice about regex101.com is that it also
generates a description of what and how the RegEx string operates.

Page 139 of 194

https://regex101.com/

X9Utilities User Guide X9Ware LLC

AI Assistance

Chat-GPT (and other similar AI tools) can be used to develop your RegEx strings. These tools are
great because you can describe your requirements in a great level of detail, and the tool will then
automatically build the RegEx string per your stated needs. You need to make sure you mention
that you are using Java HTML strings, since various programming environments can slightly vary.
Once you get a RegEx string from your AI tool, you must then take that to an online test site (as
mentioned above) for your detailed testing. At this point, you will want to include both positive
and negative test cases. An important point to remember is that the AI tool make format your
RegEx strings such that a single backslash character ‘\’ is actually escaped and thus provided as
‘\\’. This means that you must enter change those ‘\\’ sequences to just ‘\’ in your online testing,
and also when you enter the RegEx string into your XML file.

RegEx Examples

The following RegEx match-replace examples may help:

Input Value Match Replace Output Value Comments

123456789/22 /[0-9]{2,3}$ /33 123456789/33 This match string looks for a
two or three digit number at the
end of the string and replaces
that with “33" when present.
This is an example of a two
digit number being replaced.

123456789/222 /[0-9]{2,3}$ /33 123456789/33 This is an example of a three
digit number being replaced.

123456789/2222 /[0-9]{2,3}$ /33 123456789/2222 This is an example of a four
digit number not being
replaced.

123456789/ /[0-9]{2,3}$ /33 123456789/ This is an example of no
trailing number whatsoever,
and it not being replaced.

00012345 ^0* 12345 The ^ anchors to the start of the
string, and then matches 0*
zero or more 0 characters .
These are then replaced with
the empty string to remove
them.

12345 ^0* 12345 This is an example of trying to
remove leading zeroes when
they do not exist in the input.
Hence the string is unchanged.

Page 140 of 194

X9Utilities User Guide X9Ware LLC

SplitSplit

Split reads an existing x9 file in common industry defined formats and splits (divides) into output
segments, where each output is a separate x9 file. The file, cash letter, and bundle headers are
copied from the input x9 to the output x9. We will refer to each output x9 file as a logical segment.

• Each output segment (file) will always contain a file header and file trailer.
• Each output segment receives one or more items, as defined by the split xml parameter file

(which is defined below).
• A skip segment can be created for items that are to be purposefully skipped.
• A default segment can be optionally created as a catch-all for all items that were otherwise

unselected by all defined criteria.
• A given cash letter header/trailer is only copied when that cash letter contains items.
• A given bundle header/trailer is only copied when that bundle contains items.
• All trailer records (bundles, cash letters, and file) will be automatically recomputed.

Items are routed to output segments based on a logical split key, which is defined based on fields
that must be located within:

• The file header record.
• The cash letter header record.
• The bundle header record.
• The individual item.
• The primary addenda (endorsement) record that is attached to the item (type 26 or 33).

Each output segment then receives items that represent one or more split keys. For example, you
could use the facility to define output segments based on:

• The file header destination routing.
• The file header and cash letter header destination routing.
• The item routing.
• The item MICR OnUs transaction code.
• Subsets of any of these fields; for example, selective substring digits from the type 26/33

item sequence number.

Command line options

Switch Description

-config: Use a specific x9 configuration. When this parameters is omitted, the file header will
be inspected to determine the most appropriate x9 configuration to be used.
However, you may also provide a specific “-config:" value. For example, this
parameter could be specified as “-config:x9.37" or “-config:x9.100-187-2008".

-j A summary JSON file will be created with a suffix of “_summary.json" in the same
folder as the output x9 file.

Page 141 of 194

X9Utilities User Guide X9Ware LLC

-t A summary text file will be created with a suffix of “_summary.txt" in the same
folder as the input x9 file.

-x A summary XML file will be created with a suffix of “_summary.xml" in the same
folder as the input x9 file.

-l Will list all x9 records to the system log.

-batch Invokes batch (folder based processing; see that earlier topic for more information.

-workUnit: Assigns command line parameters and files from an xml file that was previously
created and saved by the X9Utilities facility within X9Assist. This allows you to
easily repeat an X9Assist task directly in X9Utilities batch.

Command line examples

x9util -split <input.x937> <parameters.xml>

reads <input.x937> using split parameters defined in <parameters.xml> and creates x9
segments (named per xml content) with a corresponding results file <input.csv> within the
designated input folder.

x9util -split <input.x937> <parameters.xml> <outputFolder>

reads <input.x937> using split parameters defined in <parameters.xml > and creates
segments (named per xml content) with a corresponding results file <input.csv>. Named
output files can have relative file names and will be created in the designated output folder.

x9util -split <input.x937> <parameters.xml> <outputFolder> <results.csv>

reads <input.x937> using split parameters defined in <parameters.xml> and creates
segments (named per xml content) with a corresponding results file <results.csv>. Named
output files can have relative file names and will be created in the designated output folder.

x9util -j -split <input.x937> <parameters.xml> <outputFolder> <results.csv>

reads <input.x937> using split parameters defined in <parameters.xml> and creates
segments (named per xml content) with a corresponding results file <results.csv>. Named
output files can have relative file names and will be created in the designated output folder.
A summary JSON file will be created.

x9util -x -split <input.x937> <parameters.xml> <outputFolder> <results.csv>

reads <input.x937> using split parameters defined in <parameters.xml> and creates
segments (named per xml content) with a corresponding results file <results.csv>. Named
output files can have relative file names and will be created in the designated output folder.
A summary XML file will be created.

Page 142 of 194

X9Utilities User Guide X9Ware LLC

Default Output Segment

The default output segment is optional and serves as a catch-all for any items that were not
selected and written to any other output segment. The default segment can be used as an exception
file to identify unexpected items based on the segment selection criteria. Exit code four will be
posted when the default output segment contains items.

Skipped Items

In addition to default items, there is also the potential for skipped items. This facility is very useful
to allow you to skip credits, since split is most typically targets debits. Skipped items will not be
written to any output segment.

Auto-Reconcilement

Split accumulates the number of items written to all output segments (plus the skipped items) and
will abort if that item count does not match the number of input items.

Output Segment Totals

Split accumulates debit and credit totals for each output segment and includes those totals in the
system log.

Output Segment File Names

Output file names can be defined in a variety of ways:

• The base file name (base+extension) can be defined within the XML file, with the output
folder then defined as a command line parameter. This approach allows the same XML file
to be used for alternative purposes (for example, test versus production).

• The base file name (base+extension) can be defined within the XML file, without having
an output folder defined as a command line parameter. In this situation, the output folder
will be defaulted to the same folder where the input file resides. This approach allows the
same XML file to be used for alternative purposes (for example, test versus production).

• Finally, the XML file can define a fully qualified output file name (folder plus base file
name including extension. When this approach is used, the file name is completely self-
defining, with no further parameters needed from the command line.

Split Results CSV File

Split creates a results CSV file that has one line for each output segment created. The columns for
this file are as follows:

Column Content

1 Output file name.

2 Record count.

3 Debit count.

4 Debit amount.

Page 143 of 194

X9Utilities User Guide X9Ware LLC

5 Credit count.

6 Credit amount

Split XML Tag Names

The following basic options are available in the split xml file:

Xml Tag Name Content Default

<defaultFileName> Default output file to be written, for those items that are
unselected by all criteria.

Omitted.

<dateTimeStamp> A date pattern to be utilized when output segments are to
be suffixed with a time stamp. This facility can be used to
make all output file names unique. A commonly used
assignment would be: yyyyMMdd_HHmmss . You can
do an internet search on “Java Date Format Pattern" for all
allowable pattern characters and usage examples.

Omitted.

<doNotRewrite> Indicates if an existing output segment can be overwritten.
Values can be true or false.

False.

<debitsOnly> Indicates that only debits should be selected. Values can be
true or false.

False.

<creditsOnly> Indicates that only credits should be selected. Values can
be true or false.

False.

Split XML file examples

The update xml deck allows specific fields within the input file to be inspected for one or more
values, which can then be replaced with a new target value. When searching for multiple values,
all existing input values can be mapped to the same or different replacement values.

The x9 rules unfortunately define separate routing and routing check digit fields for the payor
routing in record types 25 and 31. To facilitate replacement of those fields are considered
combined as a single nine-digit field for both the old and new values. This concatenation of data
applies only to those two specific situations.

Update contains <match> and <replace> parameters at the field level.

The <match> parameter supports a variety of search functions that can be used to identify the
values to be used for the split operation, as follows:

• <match/> matches against blank values.
• <match>*</match> is a wild card that matches against any and all values.
• <match>=xx</match> searches for a specific value (in this case, xx).
• <match>=xx|yy|zz</match> searches for a list of specific values (in this case, xx, yy, zz).
• <match>=micr-account-numbers-xxxxxx|xxxxxx|xxxxxx|...</match> searches the MICR

OnUs field (eg, field 25.6) against a list of one or more account numbers, separated by ‘|’.

Page 144 of 194

X9Utilities User Guide X9Ware LLC

This rule is provided because the doing this using RegEx is difficult, given the various
content within the MICR OnUs field. A usage example would be: <match>=micr-account-
numbers-11111|22222|33333|44444</match>. An important note is that this field contains
the numeric digits within the account number only. Any embedded blanks within the
account number will be removed as part of this comparison.

• <match>=micr-account-table-[fullyQualifiedFileName]</match> searches the MICR OnUs
field (eg, field 25.6) against an external text file that contains zero or more account
numbers, where each account number if presented as a separate line within the file. If there
are 500 account numbers, then there will be 500 lines within the text file. A usage example
would be: <match>=micr-account-table-C:\Users\SomeUserID\Documents\
accountLookupTable.txt</match>. Any embedded blanks within the account number are
removed before the comparison. Note that this file name is not enclosed in brackets.

• <match>regexString</match> matches against a user provided Java RegEx string. This is a
more advanced capability but also provides the most powerful matching capabilities.

The <replace> parameter provides the immediate replacement value when searching for specific
values. However, in the case of searches that are based on RegEx, the <replace> parameter instead
provides the replacement value for that portion of the input value that was successfully matched by
RegEx. Consider the input value as containing three separate parts. First, a series of leading
characters, followed by the RegEx match string, and finally a series of trailing characters that
follow the RegEx matched portion of the string. The matched portion of the input stream will be
replaced with the <replace> value. The leading and trailing characters will be retained.

The XML file defines the fields to be queried, the match rules to be applied, and the replacement
value that will be assigned. An example is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<split>
 <outputs>

 <defaultFileName></defaultFileName>
 <debitsOnly>false</debitsOnly>
 <creditsOnly>false</creditsOnly>
 <output> <fileName>F111111118.x9</fileName> <writeEnabled>true</writeEnabled>
 <fields>
 <field>20.3</field> <values> <match>111111118</match> <replace/> </values>

</fields>
 </output>
 <output> <fileName>F222222226.x9</fileName>
 <fields>
 <field>20.3</field> <values> <match>222222226</match> <replace/> </values>

</fields>
 </output>

 </outputs>
</split>

Page 145 of 194

X9Utilities User Guide X9Ware LLC

RegEx examples

Refer to “update" for RegEx match-replace examples.

Page 146 of 194

X9Utilities User Guide X9Ware LLC

Embedded Use of the X9Ware SDKEmbedded Use of the X9Ware SDK

X9Utilities is based on the X9Ware SDK. This foundation requires that certain folders be
populated within your run time environment. These folders are installed as part of the X9Utilities
package and are required for execution.

• /backup
• /images
• /invalidImages
• /properties
• /rules
• /xml

Do you need a tool with more capabilities than just x9 read and write? Please let us know; perhaps
we can add to our X9Utilities product. You can do virtually any x9 related task using the X9Ware
SDK, so it should always be considered when you have complex tasks to be performed.

Page 147 of 194

X9Utilities User Guide X9Ware LLC

Bitonal Image Thresholding

Bitonal image thresholding is the process used to convert gray scale images into binary images, where
each pixel is classified as either black or white based on its intensity value. There are a variety of
imaging algorithms to accomplish this, where each of these methods utilize their own core process to
identify one ore more threshold values. There can be a single threshold that applies to the entire image,
or the algorithms can be a more complex where there are multiple thresholds, where each is adapted to
the local area within the image. Pixels with intensities above the threshold are assigned to one class
(usually white), while pixels with intensities below or equal to the threshold are assigned to the other
class (typically black).

Bitonal Image Challenges

Significant challenges exist in this process. Gray scale images may contain noise that can affect the
accuracy and the output image that is created by the thresholding process. To address this, pre-
processing steps like smoothing or filtering can be applied to reduce noise before applying the
thresholding. Another challenge arises from a multitude of issues with the input image itself. This can
be caused by scanner noise, image artwork, complex backgrounds, camera problems with mobile
deposits, and varying lighting conditions when the image is captured. All of these can lead to uneven
intensity values, which can result in undesirable results where images are washed out to black making
the output image unusable. Adaptive thresholding methods attempt to mitigate this issue by adjusting
the threshold locally based on image content can mitigate this issue.

Within our SDK and X9Utilities, we have implemented a number of thresholding methods that are
sequentially, in an attempt to generate a usable output image despite initial image capture issues. This is
accomplished by applying a variety of thresholding techniques and evaluation the resulting image for
usability. This process ultimately selects the image that, based on our inspection, appears to provide the
most usable output image.

Bitonal Thresholding Techniques

Our thresholding process first invokes the standard Java ImageIO conversion from gray scale to bitonal
that is provided by the JDK. This result is accepted when the output image is determined to be usable.
We otherwise then attempt a variety of additional thresholding techniques:

• Otsu's thresholding, named after Nobuyuki Otsu, which is a widely used automatic thresholding
technique for image segmentation. The primary goal of Otsu's method is to find an optimal
threshold that minimizes the intra-class variance while maximizing the inter-class variance of
pixel intensities in a gray scale image. This threshold effectively separates the image into two
classes, typically foreground and background, resulting in a binary image. The algorithm
calculates the histogram of pixel intensities in the gray scale image and then iterates through all
possible threshold values. For each threshold, it computes the intra-class variance, representing

Page 148 of 194

X9Utilities User Guide X9Ware LLC

the spread of intensities within each class, and the inter-class variance, representing the
difference between the mean intensities of the two classes. The threshold that maximizes the
ratio of inter-class variance to intra-class variance is chosen as the optimal threshold. Otsu's
method is particularly effective in scenarios where there are distinct intensity peaks
corresponding to different image regions. It is robust in handling images with bimodal intensity
distributions. This automated thresholding technique is widely employed in various image
processing applications, including medical image analysis, document processing, and computer
vision tasks, offering a data-driven approach for effective image segmentation.

• Li's thresholding which is an automatic thresholding method used for image segmentation,
particularly in scenarios where Otsu's method may not perform optimally. Developed by Cheng-
Chang Li, this technique aims to find a threshold that minimizes the cross-entropy between the
original grayscale image and the resulting binary image. Unlike Otsu's method, Li's
thresholding is suitable for images with uneven illumination or non-uniform background. Li's
method involves computing the histogram of pixel intensities and iteratively determining the
threshold that minimizes the cross-entropy. Cross-entropy is a measure of the dissimilarity
between two probability distributions, and in this context, it represents the dissimilarity between
the grayscale image and the binary image based on the chosen threshold. One of the advantages
of Li's thresholding is its adaptability to images with varying lighting conditions, making it
suitable for a broader range of applications. This method has found use in fields such as medical
image analysis, document processing, and industrial quality control. As with any thresholding
technique, it is essential to evaluate its performance on specific image characteristics and adjust
parameters accordingly for optimal results in diverse imaging scenarios.

• Mean thresholding which is a simple yet effective technique for image segmentation,
particularly in cases where the image exhibits a relatively uniform background. This method
calculates a threshold based on the mean intensity of the pixel values in the grayscale image.
The idea is to classify pixels as foreground or background depending on whether their intensity
is above or below the computed mean threshold. The process involves calculating the mean
intensity of all pixels in the image and using this value as the threshold. Pixels with intensities
greater than the mean are assigned to one class (often considered foreground), while pixels with
intensities less than or equal to the mean are assigned to the other class (typically background).
This straightforward approach makes mean thresholding computationally efficient and easy to
implement. However, mean thresholding may be sensitive to variations in image background
and lighting conditions. It may not perform well in cases where the image has a non-uniform
background or contains significant noise. As a result, mean thresholding is often most effective
in situations where the image exhibits consistent illumination and a clear intensity distinction
between foreground and background. Careful consideration of image characteristics is essential
when choosing an appropriate thresholding method for optimal segmentation results.

Page 149 of 194

X9Utilities User Guide X9Ware LLC

• Yen's thresholding method, proposed by Chin Yen in 1995, which is an automatic image
thresholding technique designed to address challenges presented by uneven illumination and
varying backgrounds in gray scale images. It aims to find an optimal threshold that maximizes
the criterion known as the Yen's entropy. This criterion is based on the information entropy, a
measure of uncertainty or disorder in a probability distribution. The Yen thresholding algorithm
computes the histogram of pixel intensities and then iteratively evaluates the entropy for all
possible threshold values. The threshold that maximizes the Yen's entropy criterion is selected
as the optimal threshold for segmenting the image into two classes. Yen's method is particularly
effective in scenarios where Otsu's method may struggle, such as images with uneven
illumination or complex backgrounds. By considering the information entropy, Yen's
thresholding provides a robust solution for images with diverse intensity distributions. This
technique has found applications in various fields, including medical image analysis, document
processing, and object recognition. Its adaptability to different image characteristics and its
ability to handle challenging lighting conditions make Yen's thresholding a valuable tool in
automated image segmentation tasks, offering improved performance in situations where
traditional methods may fall short.

• Adaptive thresholding, which is a versatile image segmentation technique that addresses
challenges posed by variations in illumination across an image. Unlike global thresholding
methods, which use a single threshold for the entire image, adaptive thresholding dynamically
adjusts the threshold locally based on the pixel values in the vicinity of each image point. The
algorithm divides the image into smaller regions or tiles, and a distinct threshold is computed
for each region. This enables adaptive thresholding to handle images with uneven lighting or
complex backgrounds more effectively. Common methods for adaptive thresholding include
mean-based, Gaussian-based, and Sauvola's method, each with its own approach to computing
local thresholds. Mean-based adaptive thresholding calculates the threshold for each region by
considering the mean intensity of the pixels within that region. Similarly, Gaussian-based
methods use the weighted average of pixel intensities, giving more significance to the central
pixels. Sauvola's method takes into account both the mean and the standard deviation of pixel
intensities to adaptively compute thresholds. Adaptive thresholding is particularly useful in
applications such as document processing, character recognition, and medical imaging, where
lighting conditions may vary across an image. By adapting to local characteristics, this
technique enhances the accuracy of segmentation in diverse scenarios, offering a more robust
solution to challenges presented by complex image structures and lighting variations.

• Niblack thresholding is an adaptive thresholding technique designed to address challenges in
image segmentation posed by variations in illumination and noise. Proposed by Wayne Niblack
in 1986, this method computes local thresholds for each pixel based on the mean and standard
deviation of pixel intensities within a local neighborhood or window. The algorithm divides the
image into non-overlapping windows and calculates a threshold for each window. Pixels with

Page 150 of 194

X9Utilities User Guide X9Ware LLC

intensities higher than the local mean plus a user-defined parameter (typically a multiple of the
standard deviation) are classified as foreground, while pixels below this threshold are classified
as background. This adaptive approach makes Niblack thresholding well-suited for images with
uneven illumination or varying background conditions. One advantage of Niblack thresholding
is its sensitivity to local image characteristics, enabling it to handle variations in lighting and
noise. However, it may be sensitive to the choice of parameters and may not perform optimally
in all scenarios. Despite this, Niblack thresholding has found applications in document image
analysis, where text may be present against varying background intensities, and in scenarios
where local adaptability is crucial for accurate image segmentation. Experimentation and
parameter tuning are often necessary to optimize its performance for specific imaging
conditions.

Our SDK (class X9ImageThresholding) and X9Utilities products utilize all of these thresholding
techniques to achieve best possible results. We have done a lot of research and subsequent work to
implement a very good solution for these issues. We are interested in your feedback as to how our
current solution works and can be be further improved.

Page 151 of 194

X9Utilities User Guide X9Ware LLC

MICR Line Format and Standards

Magnetic Ink Character Recognition (MICR) technology was adopted in the US in the late 1950's as a
standard mechanism to electronically and accurately read check information using the technology that
existed at that time. The encoded information identifies the financial institution that issued the check
and the account that is associated with the transaction. Numerous standards are defined which identify
where the information must be printed and how it must be formatted.

The MICR line is printed using magnetic ink or toner, which is read using a MICR reader. Use of
magnetic ink allowed the data to be read even when it was written over or otherwise obscured by
subsequent information that was printed on the physical check.

Newer technologies allow information to be more easily captured using Optical Character Recognition
(OCR). Many devices today will do a combination of MICR and OCR reads which then compare the
results for improved quality.

MICR Line Standards

There are standards that govern the placement and format of some fields of information printed in the
MICR data of a check. The fact that standards do not cover the location or meaning of all the
information contained in the MICR data of a check presents a problem for parsing operations. The
process of inspecting the MICR data information and separating particular fields of information can be
done by the MICR reader or host application. In any case, a set of rules must be developed to separate
the various information fields. This will only work on checks whose MICR data format follows
industry conventions. Once the fields are separated, the information is reformatted for processing by an
on-line check processing and clearing service.

The MICR line contains 65 positions, numbered from right to left and grouped into four fields:

• Auxiliary On-Us
• Transit
• On-Us
• Amount

All checks have at least three of the fields (amount, On-Us, and transit number). Commercial checks
have an additional field on the left of the check, called the auxiliary On-Us field. Some checks also
have an external processing code (EPC) digit, located between the transit and auxiliary On-Us fields.
The amount and transit fields have a standardized content, while the contents of the On-Us fields can
vary to meet the individual bank's requirements.

Page 152 of 194

X9Utilities User Guide X9Ware LLC

MICR Line Parsing

The X9Ware SDK includes class X9MicrLineParser which includes our standard logic which will parse
captured MICR line data into their component fields. This class requires that you provide the characters
your MICR line symbols, since they can vary based on your scanner. The SDK also includes class
X9MicrParserFactory which can be used to allocate new X9MicrLineParser instances using the MICR
symbols that are present in an externally defined x9header XML file.

MICR Line Characters

MICR Line Fields

MICR line fields (from right to left on the check) are as follows:

Field # Field Name MICR
Positions

Description

1 Amount 1 – 12 Amount with leading and trailing E13B amount symbols. This
field is typically not encoded in the image environment.

2 On-Us 13– 32 On-Us identifies the customer account and may contain other
information such as the check serial number, transaction code,
or both. The last position of this field is usually followed by a
blank in position 32.

Page 153 of 194

X9Utilities User Guide X9Ware LLC

Field # Field Name MICR
Positions

Description

3 Transit 33 – 43 Nine-character routing number with leading and trailing E13B
transit symbols. The transit field identifies the payor financial
institution. On a check having four fields, the transit field is
second from the left. However, shorter personal checks will not
have an Auxiliary On-Us field, and in that situation the transit
field is the left-most field of the three fields that are present.
US (FRB) routing numbers will typically be a nine-digit
number where he last digit is calculated using a MOD10
algorithm. You will also see US routings formatted as xxxx-
xxxx (with an embedded dash). You may also encounter
Canadian items which are formatted as xxxxx-xxx.

4 EPC 44 The external processing code (EPC) is an optional field that is
encoded between the transit and auxiliary On-Us fields in
position 44. When present, this field indicates that the
document is eligible for special processing.

5 Auxiliary
On-Us

45-65 The auxiliary On-Us field is an optional field which is
typically used by the payor bank for business check serial
numbers or other internal information. When present, it is left-
most on the check in MICR line positions 45 through 65.
(actual number of potential characters is dependent on the
physical width of the item). Aux OnUs is not present on
personal checks because of physical size of those items.

MICR Line Layout

Page 154 of 194

X9Utilities User Guide X9Ware LLC

MICR Line RegEx

RegEx matches are usually “greedy” so they will match as many characters as possible. This means
using a wildcard character can be used to match everything. For example,

• A* would match all of the A’s in AAAAAAAAAAAAAAAAAAAAAB,
• A+ would also match them, A would match the first one,
• A{10} would match the first 10,
• And so on.

Commonly used RegEx expressions:

(?<=) - this looks for a match to whatever terms are after the = but does not return it, when put
in front of a search it has to match this first. Effectively acts as a left boundary.

(?=) - this looks for a match to whatever terms are after the = but does not return it, when put
after of a search it has to match this last. Effectively acts as a right boundary.

\d = any digit.

Page 155 of 194

X9Utilities User Guide X9Ware LLC

[A] = match any A.

[ABC] = match any A, B, or C character.

[0-9] = match any digit from 0-9.

[0-9]+ = match all digits in a row, minimum 1.

[0-9]* = match any number of digits in a row (including none).

^ = start of a line.

$ = end of a line.

\ = used as an escape character, e.g. \\ matches the \ character.

? = after a character or ()? Makes that term optional (greedy means it will include it if it there).

() = group terms and also creates the bracket contents as a variable (variable is referenced as a
number based on the order of the opening (e.g. first () is 1, and so on, can be inside brackets
themselves.

\1 $1 = depends on implementation but can be used to reference the value of the corresponding
term in brackets.

Based on the above:

Field RegEx Regex Notes

Amount (?<=B)\d+ Matches the part of a string preceded by B that
consists of only numbers - it will get all the
numbers and stop when it reaches anything not a
number.

On-Us (?<=A)[0-9DC]+(?
=C|B|$)

Matches the part of a string preceded by A, that
contains numbers, C, or D and ends with B, C or
the end of the line.

Transit [0-9D]+(?=A) Matches the part of a string that precedes A and
has numbers or D.

EPC (?<=^|B)[0-9](?=A) Matches a single number that is preceded by B
or the start of the line, and is followed by A.

Aux On-Us [\dD]+(?=CA) Matches the part of a string that consists of
digits and D, and is followed by CA.

Page 156 of 194

X9Utilities User Guide X9Ware LLC

Further RegEx Reading

https://www.regular-expressions.info/

https://regexr.com/

Page 157 of 194

https://www.regular-expressions.info/

X9Utilities User Guide X9Ware LLC

Appendix: HeaderXml

Many financial institutions and third party processors have implemented their own x9.37 requirements
and variants that are based (to varying degrees) on the x9.37 file standards. The process of generating
x9 files generically in the formats required for these processors becomes a complex task given the
numerous options and settings that are required.

X9Ware has addressed this need through our HeaderXml class which is implemented within the SDK
and leveraged by our X9Utilities product. HeaderXml define parameter values which control the
generation of an x9 file. HeaderXml specifically defines the various values that can be populated in the
file header, cash letter header, bundle header, and item records.

HeaderXml values are populated from an external XML file. Our long term goal is to provide the
options needed to create x9.37 files for virtually all financial institutions and third party processors that
use the x9.37 standard. We are largely met that goal today, since we are not aware of any banks with
options that we cannot support. This includes all options needed to populate header and trailer records,
various credit formats, various credit locations, and a wide variety of parameters that control the values
associated with item and image definitions. In alignment with our support goal, be aware that this
definition will change from release to release as we continue to improve upon this process and thus
expand the parameters. Although we will always make every attempt to retain compatibility with
current implementations, you should also design your application and support processes in a manner
where you can adapt to ongoing change.

When creating a new HeaderXml file, you should begin with the sample x9headers.xml as included in
our software installation. You can then review the field names within this xml file and refer to the user
guide for their specific purpose. If you are upgrading from a previous release, you can copy and paste
the values from your previous definition. Do this carefully since there is the potential that fields have
been moved within the parameters and that field names have been changed to improve clarity.

Editing HeaderXml

Our X9Validator and X9Assist desktop products include the HeaderXml937 Editor, which is tools that
can be used to edit, validate, and save HeaderXml definitions. This is the easiest way to create and
maintain your HeaderXml files. We highly suggest that all X9Utilities also have X9Validator, since it is
the best tool in the industry to validate the x9.37 files that are created by X9Utilities.

XML documents have a hierarchical structure and can conceptually be interpreted as a tree structure,
called an XML tree. All XML documents contain a root element (one that is the parent of all other
elements). The XML document then contains a series of elements, where each element can itself
contain sub-elements, text and attributes.

During the editing process, it is extremely important that the proper tools and file validations be
utilized to ensure that editing does not result in an invalid XML file structure. Without this, it is far too
easy to save a file that has unmatched XML control tags. When this happens, the XML file cannot be
successfully parsed and will ultimately result in an application “abort” when you attempt to use the file.

Page 158 of 194

X9Utilities User Guide X9Ware LLC

There are many XML editors that are available in the marketplace today that address these issues.
Many environments have chosen and implemented such tools, and you can certainly use your standard
tools when available. If you do not have an XML editor immediately available to you, we recommend
that you consider one of the following:

• Our X9Validator/X9Assist desktop products include the HeaderXml937 Editor that is targeted
specifically for viewing, creating, and modifying these HeaderXml files. Our editor understands
our XML format and makes it very easy to manipulate these files. The HeaderXml937 Editor is
a standard feature of X9Validator/X9Assist, and was added as part of our R4.05 release. We
highly suggest that you consider use of this tool. The functionality provided by the
HeaderXml937 Editor is described as the last topic in this user guide.

• Another popular tool is NotePad++ with the XML Tools plugin. This combination provides
immediate feedback on XML syntax and will not let you save an XML file with an invalid
hierarchical structure. NotePad++ with the XML Tools plugin will ensure that you have
matching tags within your XML document, and that using NotePad++ without the XML Tools
plugin is a regression back to a simple text editor. However, even with the plugin, NotePad++
cannot validate that the tags themselves are correct, as can be done by X9Validator/X9Assist.

• Another commonly used tool is the XML Notepad editor from Microsoft, which provides a
simple intuitive user interface for browsing and editing XML documents. It has similar + / - as
using NotePad++.

• Finally, you can revert to using a simple text editor such as Microsoft NotePad. However, doing
so forces you to assume complete responsibility for the XML document structure.

HeaderXml as Written to the Log

X9Utilities will write all current HeaderXml settings to the in the system log each time that they are
used by the “-write” function. You can use the system log for several determinations.

• You can determine the value that has been assigned to all HeaderXml fields.

• You can review the list of all possible fields which are available. This is extremely useful, since
it allows you to see any new parameters that have been added in recent releases.

• You can identify new HeaderXml fields which are available but are not present in the provided
xml definition.

The following shows a field value setting when the field is defined in the xml definition:

2015-12-03 15:19:50.549 [INFO] document(HeaderXml) fieldName(x9fileSpecification) value(x9.37)
(com.x9ware.dom.X9Dom.getFieldsUsingReflection:624)

The following shows a field which is assigned a default value when not defined in the xml:

2015-12-03 15:19:50.581 [INFO] document(HeaderXml)!fieldName(itemAddendumCount) default(0)
(com.x9ware.dom.X9Dom.getFieldsUsingReflection:624)

Page 159 of 194

X9Utilities User Guide X9Ware LLC

X9 File Structure

The created x9 file will consist of a single cash letter that is wrapped by a file header and file control
trailer. No bundles will exist when a file does not have any items. Bundles are automatically created
from the provided items. Individual bundle size is automatically limited by the identified bundle size
count.

Inclusion of Credits in Trailer Totals

There are unfortunately no industry wide standards as to how credits are included in bundle, cash letter,
and file control trailers. Specific actions to include credits in trailers are thus dependent upon the
current x9 file specification and variant being used.

The SDK must be able to both create and validate totals. For convenience, the flags which indicate how
credits impact trailers are defined in the x9 headers XML and then replicated in our x9 rules. Setting
either of these will result in credits being included in your trailer counts and amounts.

The SDK first interrogates the values defined by the x9.100-187-2013 specification which are
optionally present in the bundle, cash letter, and file control trailers to indicate if those specific record
types are to include credit counts. A value of “1” indicates that credits add to counts and amounts, while
a value of “0” indicates that credits do not add to counts and amounts. These values are take priority
over all other settings when present. Note that this standard is flexible but has several oddities. First is
that it creates the unusual situation where you might add credits to bundles and not to cash letters.
Second is that it does not support the situation where credits add to counts but not amounts.

The SDK otherwise uses our x9 headers XML and x9 rules definitions to determine when and how
credits impact the trailer records. There are separate flags to indicate if credits should be added to either
counts and/or amounts. Turning a flag on will roll credits through the various levels (bundle, cash letter,
and file control) for consistent balancing. There is no current capability to update one level and then
forcibly omit in others, since our design is to roll these accumulators through these hieratchies. The
SDK does support the ability to include credits in counts but to then exclude them from total amount,
which is used by some x9 variants.

HeaderXml Fields defined within the <info> group

The <info> group is used for change management documentation. These fields will be listed to the log
in support of problem determination but are otherwise not used.

XML
Group XML Field Name

Populated
Into Notes

<info> accountName Credit
52.19

Primarily used for
documentation, but also
inserted into the credit
image when
<creditImageDrawFront> is
true. When using credit
profiles, the account name

Page 160 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

should be redirected to the
profile and this field can
instead be set to something
generic like “various”.

<info> bankName Credit
52.19

Primarily used for
documentation, but also
inserted into the credit
image when
<creditImageDrawFront> is
true.

<info> author N/A Used for documentation
only.

<info> dateWritten N/A Used for documentation
only.

<info> dateModified N/A Used for documentation
only.

<info> comments N/A Used for documentation
only.

HeaderXml Fields defined within the <fields> group

The HeaderXml values that can be populated are defined below. This definition was substantially
changed with the R3.03 release so it must be reviewed closely.

XML
Group XML Field Name

Populated
Into Notes

<fields> x9fileSpecification N/A Identifies the x9 file specification to
be created. Default is "x9.37".

<fields> businessDate 10.05 Numeric; default is current
YYYYMMDD.

<fields> createDate 01.06,
10.06

Numeric; default is current
YYYYMMDD.

<fields> createTime 01.07,
10.07

Numeric and “0000” through “2359”;
default is current HHMM when
omitted. This value can also be
provided as an offset to the current
time. For example, a value of “+3”
will add three hours to the current
system time and that a value of “-2”

Page 161 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

will subtract three hours. Note that
providing a current time offset may
also update the current date.

<fields> batchProfile N/A Batch profile is used to assign a static
profile name which will default to “”.
Batch profiles are an advanced
function where the profile name
would typically be specified on each
incoming item CSV row. In those
situations, the items are reordered and
batched by profile, and the profile
name can be used to redirect certain
headerXml values to an external
properties file. However, it is also
possible to statically assign a single
batch profile name to the headerXml
file. When doing this, you can still
redirect certain field assignments to
an external properties file. An
example of usage would be
<batchProfile>customer.properties</b
atchProfile>.

<fields> fileStandardLevel 01.02 Default is “03”.

<fields> fileMode 01.03 Default is “T”.

<fields> fileOriginationRouting 01.05

<fields> fileOriginationName 01.10

<fields> fileDestinationRouting 01.04

<fields> fileDestinationName 01.09

<fields> fileIdModifier 01.11 If the fileIdModifier value is provided
as one character, then it represents the
specific value to be assigned. It
otherwise is the same of a
fileIdModifier xml file will be
referenced and used to assign a
rolling fileIdModified within the
current calendar date. This external
file reference can be provided on an
absolute (fully qualified) or relative
basis (location would be within the

Page 162 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

same folder where this headerXml
definition appears).

<fields> fileResendIndicator 01.08

<fields> fileUcdIndicator 01.14

<fields> fileCountryCode 01.12

<fields> fileUserField 01.13

<fields> cashLetterEceInstitutionRouting 10.04

<fields> cashLetterDestinationRouting 10.03

<fields> cashLetterIdentifier 10.10 Default (when this field is omitted) is
to create as “hhmmssSSS” which
satisfies the common requirement that
the cash letter identifier be unique for
a given day. There are several other
alternatives:

• “xxxxxxxx” (up to 8 character
string) which is directly
assigned to all cash letters.

• “sequential” which assigns an
incremented cash letter
identifier beginning with
“00000001”.

• “creditISN” which assigns the
rightmost 10 characters of the
credit item sequence number
to the bundle identifier. This
feature requires that
creditBeginsNewBundle is
true.

• “creditSerial” which assigns
the rightmost 10 characters of
the credit AuxOnUs serial
number to the bundle
identifier. This feature
requires that
creditBeginsNewBundle is
true.

• “%xxxx” (up to a 4 character
user string) which inserts the
variable length cash letter

Page 163 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

number at the beginning
making it unique. For
example, a value of “%BI”
assigns a value of “1BI” to the
first cash letter, while “%”
would simply assign a value
of “1”.

• “xxxx%” (up to a 4 character
user string) which inserts the
variable length cash letter
number at the end making it
unique. For example, a value
of “BI%” assigns a value of
“BI1” to the first cash letter.

• “#xxxx” (up to a 4 character
user string) which inserts the
current four character cash
letter number at the beginning
making it unique. For
example, a value of “#BI”
assigns a value of “0001BI” to
the first cash letter, while “#”
would simply assign a value
of “0001”.

• “xxxx#” (up to a 4 character
user string) which inserts the
current four character cash
letter number at the end
making it unique. For
example, a value of “BI#”
assigns a value of “BI0001” to
the first cash letter.

<fields> cashLetterContactName 10.11

<fields> cashLetterContactPhone 10.12 Numeric

<fields> cashLetterReturnsIndicator 10.14

<fields> cashLetterRecordTypeIndicator 10.08

<fields> cashLetterDocumentationTypeIndicator 10.09

<fields> cashLetterCollectionTypeIndicator 10.02

<fields> cashLetterFedWorkType 10.13

Page 164 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

<fields> cashLetterUserField 10.15

<fields> bundleItemCount N/A Default is 300.

<fields> bundleEceInstitutionRouting 20.4 Defaulted from the current cash letter
header when omitted.

<fields> bundleDestinationRouting 20.3 Defaulted from the current cash letter
header when omitted.

<fields> bundleIdentifier 20.07 Default (when this field is omitted) is
to create as YYMMDDHHMM which
is unique for a given calendar day for
the current destination. This setting
satisfies the common requirement that
the combination of bundle identifier
and bundle sequence number are
unique within a single x9 file. There
are several other alternatives:

• “xxxxxxxxxx” (up to 10
character string) which is
directly assigned to all
bundles.

• “sequential” which assigns an
incremented bundle identifier
beginning with
“0000000001”.

• “%xxxxxx” (up to a 6
character user string) which
inserts the variable length
bundle number at the
beginning making it unique.
For example, a value of
“%BI” assigns a value of
“1BI” to the first bundle,
while “%” would simply
assign a value of “1”.

• “xxxxxx%” (up to a 6
character user string) which
inserts the variable length
bundle number at the end
making it unique. For
example, a value of “BI%”
assigns a value of “BI1” to the
first bundle.

Page 165 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

• “#xxxxxx” (up to a 6
character user string) which
inserts the current four
character bundle number at
the beginning making it
unique. For example, a value
of “#BI” assigns a value of
“0001BI” to the first bundle,
while “#” would simply
assign a value of “0001”.

• “xxxxxx#” (up to a 6
character user string) which
inserts the current four
character bundle number at
the end making it unique. For
example, a value of “BI#”
assigns a value of “BI0001” to
the first bundle.

• “creditISN” which assigns the
rightmost 10 characters of the
credit item sequence number
to the bundle identifier. This
feature requires that
creditBeginsNewBundle is
true.

<fields> bundleCycleNumber 20.09,
52.04

This field is optional, but when
provided, it will be consistently
populated into the bundle header
record (20.09) and the image view
data record (52.04).

<fields> bundleReturnsRouting 20.10

<fields> bundleUserField 20.11

<fields> bundleReservedField 20.12

<fields> The fields from this point forward are
included in the XML parameters file and
are used exclusively by the X9Writer
interface provided via the SDK. They can
then be utilized by X9Utilities when the
HeaderXml file is used for your writer
parameters.

Page 166 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

<fields> bundleSequenceNumberAlpha 20.08 Populates the bundle sequence
number on an alphanumeric basis
when set to true. For example, the
first bundle will be assigned a value
of “1” when this parameter is
enabled. The default is false where
the first bundle will instead be
assigned a value of “0001”.

<fields> trailerInstitutionName 90.06

<fields> trailerSettlementDate 90.07 Default is business date when not
provided; a value of “none” will
cause the settlement date to be set to
spaces.

<fields> trailerContactName 99.06

<fields> trailerContactPhone 99.07 Numeric

<fields> trailerCreditTotalIndicator 70.07,
90.08,
99.08

When using the x9.100-187-2013
standard, specifies the credit total
indicator value that should be set in
trailer records. This field has values
of “1” (accumulated credits into
trailers) or “0” (do not accumulate
credits into trailers).

<fields> trailerPopulateMicrValidAmount 70.04 Default is “true”. Indicates if the
accumulated MICR valid amount
should be populated into the bundle
trailer record.

<fields> trailerPopulateImageCount 70.05 Default is “true”. Indicates if the
accumulated image count should be
populated into the bundle trailer
record.

<fields> creditFormat

• “metavante” – an industry standard
type 61 credit with 13 fields that is
defined in x9rules as format 61-
001.

• “dstu” – an industry standard type
61 credit with 12 fields that is
defined in x9rules as format 61-

Identifies the credit record type and
format to be used to create the credit
per the selected x9 configuration
rules. This field can be populated in
one of several manners. First, on a
logical basis using a record level
description that is set within x9
rules (eg, “metavante”) or on an

Page 167 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

002.
• “x9.100-180” – an industry

standard type 61 credit which is 84
characters long that is defined in
x9rules as format 61-003.

• “wellsfargo” – an industry
standard type 61 credit with 11
fields that is defined in x9rules as
format 61-004.

• “t25” – an alternative that uses a
type 25 check detail record to
represent the credit. The item must
be identified as a credit in some
manner, typically using an
appended transaction code in
MICR OnUs, but possibly also
using a dedicated credit routing.

• “t10” – an alternative that batches
each deposit within a dedicated
cash letter. Each deposit account
must be identified in some manner,
typically using either the cash
letter ECE origination routing, the
contact name, or the contact phone
number. When using this format,
the credit record location must be
set to “none”.

absolute basis using the record
format (eg, “61-001”).
Various options (from those that
follow) must be used to further
configure the constructed credit.
“creditInsertedAutomatically” must
be enabled to activate this feature.
“creditLocation” must be assigned
to define where the generated credit
will be inserted into the file.
The default is that all credits will
begin in a newly created bundle.
Images can be either dynamically
drawn or provided from external
image files.
Primary and secondary
endorsements can be created and
attached to the credit.
The impact that this credit will have
against the trailer records can be
defined. This directs how the credit
will impact count and amount totals
that are present in the bundle, cash
letter and trailer records.

<fields> creditRecordLocation
Supported values are:

• none => credit is not to be inserted
• a01 => after the file header
• a10 => after the cash letter header
• a20 => after the bundle header
• b70 => before the last bundle

trailer for all items within the
current deposit (transaction)

• a90 => after the cash letter trailer

Identifies the location where the
credit should be inserted into the
created x9 file.
A value of “none” indicates that the
credit is not to be inserted, which is a
convenient way to allow a defined
credit to be turned on or off during
initial testing.
The most commonly used setting is
“a20” which will insert the credit
after the first bundle header record.
A value of “none” must be used when
a credit format of “t10” has been

Page 168 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

assigned, since there is no actual
credit to be inserted.

<fields> creditInsertedAutomatically

This facility is used to insert one or more
deposit tickets into the created file when
required by the receiving bank.

Content of the deposit ticket must be
defined using the other credit xml fields
below (creditPayorBankRouting,
creditMicrOnUs, creditMicrAuxOnUs,
creditItemSequenceNumber, etc).

The deposit ticket can optionally contain
attached proxy images which are created
using external tiff images which are
identified by creditImageProxyFront and
creditImageProxyBack.

Default is “false”. Indicates that a
credit should be automatically
generated using an amount which is
calculated as the sum of all debits
(checks) which are present in the
current file.

<fields> creditStructure
Provides further direction regarding the
creation of individual credits. This
parameter is applicable only when
creditInsertedAutomatically has been
enabled.
Credit structure allows the checks with the
deposit to be grouped in specific ways,
subject to customer or financial institution
requirements.
When using “bundledCredits”, it is
important to format your csv file such that
an item record (t25, t31, 25, 31, etc)
appears before other csv lines for this
same item. For example, the paidStamp
must be after a t25 line (and the
paidStamp must be before the image line).
This is important because the csv lines
will be grouped and reordered when
constructing the deposits, so the item
record itself must always be first.

“multiItem” creates a credit which is
offset by multiple checks. This is the
default value and represents standard
processing.
“singleItem” creates single item
deposits (every check is created
within its own deposit).
“bundledCredits” creates bundles that
will each contain their own credit.
This option is applicable only when
the financial institution requires that
each bundle contains a credit (deposit
ticket). Several other parameters work
in conjunction with this option. You
must enable creditBeginsNewBundle
and then set bundleItemCount to the
maximum number of checks that
should be attached to each credit.

Page 169 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

<fields> creditAccountName Credit
52.19

Account name inserted into the credit
image when
<creditImageDrawFront> is true, and
will override info account name (in
the header) when present.

<fields> creditPayorBankRouting 6x.xx,
25.04

The payor bank routing that is used
when a credit is inserted
automatically or when the [“credit”,
amount] format is present on the
items csv file.

<fields> creditMicrOnUs 6x.xx,
25.06

The MICR OnUs that is used when a
credit is inserted automatically or
when the [“credit”, amount] format is
present on the items csv file.

<fields> creditMicrAuxOnUs 6x.xx,
25.02

The MICR AuxOnUs that is used
when a credit is inserted
automatically or when the [“credit”,
amount] format is present on the
items csv file. A value can be
explicitly provided. More commonly,
one of our patterns is used to generate
the value. The available patterns are
as follows:
“auto” will assign a 10 digit number
as yymmddhhmm.
"jjjhhmmnnn" will assign a 10 digit
number as jjjhhmmnnn where jjj is
the Julian day within the current year
and nnn is a sequential number that is
incremented for each new credit.
“hhmmssnnnn” will assign a 10 digit
number where nnnn is a sequential
number that is incremented for each
new credit.
“debitSequenceNumber” will assign
up to a 10 digit number that is taken
from the first item in the attached
deposit. This will be the right-most 10
digits of that sequence number
(which can be up to 15 digits). Using
this value can facilitate correlation of

Page 170 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

the credit back to the attached items.

<fields> creditItemSequenceNumber 6x.xx,
25.08

The item sequence number that is
used when a credit is inserted
automatically or when the generic
“credit” format is used. A value can
be explicitly provided. More
commonly, one of our patterns is used
to generate the value. The available
patterns are as follows:
“auto” will assign a 15 digit number
as yymmddhhmmssnnn where nnn is
a sequential number that is
incremented for each new credit.
"yyjjjhhmmssnnn" will assign a 15
digit number as yyjjjdhhmmssnnnn
where jjj is the Julian day within the
current year and nnnn is a sequential
number that is incremented for each
new credit.
“yyyymmddhhmmss” will assign a 14
digit number as yyyymmddhhmmss.

<fields> creditRecordUsageIndicator 6x.xx

<fields> creditDocumentationTypeIndicator 6x.xx,
25.09

<fields> creditTypeOfAccount 6x.xx

<fields> creditSourceOfWork 6x.xx

<fields> creditWorkType 6x.xx

<fields> creditDebitCreditIndicator 6x.xx

<fields> creditReturnAcceptanceIndicator 25.10 Used when credits are populated as
t25.

<fields> creditMicrValidIndicator 25.11 Used when credits are populated as
t25.

<fields> creditBofdIndicator 25.12 Used when credits are populated as
t25.

<fields> creditAddendumCount 25.13 Used when credits are populated as
t25.

<fields> creditCorrectionIndicator 25.14 Used when credits are populated as

Page 171 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

t25.

<fields> creditArchiveTypeIndicator 25.15 Used when credits are populated as
t25.

<fields> creditBeginsNewBundle Default is “true”. Indicates that each
credit should automatically begin a
new bundle.

<fields> creditImageDrawFront Front
Image

Default is “false”. Indicates that the
front image should be automatically
drawn as a deposit slip from the
credit information.

<fields> creditImageDrawBack Back
Image

Default is “false”. Indicates that the
back image should be inserted as a
“blank” image.

<fields> creditImageDrawMicrLine Front
Image

Default is “false”. Indicates that the
micr line should be included in the
drawn front image.

<fields> creditImageTitle Front
Image

Default is “Remote Deposit”.
Provides the document title that is
included in the drawn front image.

<fields> creditImageDrawCheckListCount Back
Image

Default is 15. Provides the number of
lines to be included within a
simulated list of deposited items.
Setting this value to zero will
eliminate the list completely. This list
is provided only as back side image
content, to ensure that this image will
not fail an IQA too light test (which
may happen if the image is totally
blank).

<fields> creditImageProxyFront Front
Image

<fields> creditImageProxyBack Back
Image

<fields> creditCreateBofd Default is “false”. Indicates that a
BOFD type 26 addendum should be
created and attached to the credit.

<fields> creditCreateSecondaryEndorsement Default is “false”. Indicates that a
secondary type 28 addendum should

Page 172 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

be created and attached to the credit.

<fields> creditAddToItemCount 70.02,
90.03,
99.03

Default to “false” since these counts
typically only include the debits.

<fields> creditAddToItemAmount 70.03,
90.04,
99.04

Default to “false” since these counts
typically only include the debits.

<fields> creditAddToImageCount 70.05,
90.05

Default to “true” since these counts
typically include all type 52 records
(debits and 61/62 credits).

<fields> itemDocumentationTypeIndicator 25.09 This value will be assigned to all
items that are defined using “t25”
item rows, since those rows include
only basic item information and do
not include the various type 25
indicator values.

<fields> itemReturnAcceptanceIndicator 25.10 Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemMicrValidIndicator 25.11 Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemBofdIndicator 25.12 Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemAddendumCount 25.13,
31.07

Defaults to zero and without override
is populated based on the actual
addendum count for this item.
Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemCorrectionIndicator 25.14 Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemArchiveIndicator 25.15 Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> itemImageCreatorRouting 50.3 Defines the routing number of the

Page 173 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

financial institution which has
captured the image. This value is
normally omitted and allowed to
default to the
cashLetterEceInstitutionRouting.
Usage is as documented above for
field
itemDocumentationTypeIndicator.

<fields> bofdAddendumRouting 26.03 Nine digit routing to be assigned
when a type 26 addenda is to be
created. As an alternative to a routing
number, a value string of “blank” can
be assigned which will trigger the
creation of this addenda with the
routing field blank (this would be an
unusual requirement).

<fields> bofdDepositAccountNumber 26.06 Deposit account number, which
normally is assigned to debits from
the offsetting credit. This field can be
used to assign the deposit account
number for those files that do not
contain credits.

<fields> bofdDepositBranch 26.07 Deposit branch.

<fields> bofdPopulateDepositAccountNumber 26.06 Boolean which defaults to “false”.
This can be set to “true” to populate
the deposit account number from
either the offsetting credit (when one
is present) or from the above field
bofdDepositAccountNumber (when
the file does not contain credits).

<fields> bofdAddendumTruncationIndicator 26.09

<fields> bofdAddendumConversionIndicator 26.10

<fields> bofdAddendumCorrectionIndicator 26.11

<fields> bofdAddendumUserField 26.12 This field can contain a constant user
value or a specially formatted
credit/debit marker string. The
credit/debit marker is used by some
x9 variants to identify credits versus
debits, since there are often times no

Page 174 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

other way to accomplish this.
For example, an xmlValue of:
“CreditDebit=C:D" assigns "C" for
credit and "D" for debit;
"CreditDebit=:D" assigns "" for credit
and "D" for debit;
"CreditDebit=C:" assigns "C" for
credit and "" for debit;
"CreditDebit=CR:DR" assigns "CR"
for credit and "DR" for debit;
and so forth.

<fields> secdAddendumRouting 28.03 Nine digit routing to be assigned
when a type 28 addenda is to be
created. As an alternative to a routing
number, a value string of “blank” can
be assigned which will trigger the
creation of this addenda with the
routing field blank (this would be an
unusual requirement).

<fields> secdAddendumPopulateDate 28.04 Boolean which defaults to “false”.
This can be set to “true” to populate
the item date.

<fields> secdAddendumPopulateSequenceNumber 28.05 Boolean which defaults to “false”.
This can be set to “true” to populate
the item sequence number.

<fields> secdAddendumTruncationIndicator 28.06

<fields> secdAddendumConversionIndicator 28.07

<fields> secdAddendumCorrectionIndicator 28.08

<fields> secdAddendumUserField 28.10

<fields> secdAddendumBankIdentifier 28.11

<fields> A second type 28 addendum can be
created using the same fields as above
using the prefix “secd2” instead of “secd”.

28.xx Second type 28 endorsement record.
The populate date and populate
sequence number fields are not
duplicated; those fields apply to all
secondary addenda records.

<fields> A third type 28 addendum can be created
using the same fields as above using the
prefix “secd3” instead of “secd”.

28.xx Third type 28 endorsement record.
The populate date and populate
sequence number fields are not

Page 175 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

duplicated; those fields apply to all
secondary addenda records.

<fields> imageDetailImageIndicator 50.02 Default is “1”.

<fields> imageDetailFormatIndicator 50.05 Default is “00”.

<fields> imageDetailCompressionAlgorithm 50.06 Default is “00”.

<fields> imageDetailDataSize 50.7 Default is “blank”; can be set to
“zero” which results in the value of
zero being assigned; can be set to
“actual” with results in the actual
image size being assigned when
available.

<fields> imageDetailViewDescriptor 50.09 Default is “0”.

<fields> imageDetailDigitalSignatureIndicator 50.10 Default is “0”.

<fields> imageDetailDigitalSignatureMethod 50.11

<fields> imageDetailSecurityKeySize 50.12

<fields> imageDetailStartOfProtectedData 50.13

<fields> imageDetailLengthOfProtectedData 50.14

<fields> imageDetailImageRecreateIndicator 50.15 Default is “0”.

<fields> imageDetailUserField 50.16

<fields> imageDetailReserved1 50.17 Applies to x9.100-187 (2008 and
2013).

<fields> imageDetailOverrideIndicator 50.18 Applies to x9.100-187 (2008 and
2013).

<fields> imageDetailUserField 50.16

<fields> imageDataEceInstitutionRouting 52.2 Will default to 10.4 ECE Institution
Routing Number when omitted.

<fields> imageDataSecurityOriginatorName 52.06

<fields> imageDataSecurityAuthenticatorName 52.07

<fields> imageDataSecurityKeyName 52.08

<fields> imageDataClippingOrigin 52.09 Default is “0”.

<fields> imageDataClippingCoordinateH1 52.10

<fields> imageDataClippingCoordinateH2 52.11

<fields> imageDataClippingCoordinateV1 52.12

Page 176 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

<fields> imageDataClippingCoordinateV2 52.13

<fields> imageDataPopulateReferenceKey 52.15 Boolean which defaults to “false”.
Used by SDK applications that
invoke X9Writer directly to indicate
when the reference key should be
populated with an item level value.

<fields> imageDataPopulateDigitalSignature 52.17 Boolean which defaults to “false”.
Used by SDK applications that
invoke X9Writer directly to indicate
when the digital signature should be
populated with an item level value.

<fields> ebcdicEnCoding Boolean which defaults to “true”.
Indicates that the output x9 file
should be created in the EBCDIC
character set. Indicates (when false)
that the x9 file should be created in
ASCII.

<fields> fieldZeroInserted Boolean which defaults to “true”.
Indicates that field zero (the four byte
binary record length) should be
inserted at the beginning of each x9
record.

<fields> variableFieldDescriptorsPopulateAsNume
ric

52.14,
52.16,
52.18,
etc.

Boolean which defaults to “false”.
Indicates that variable length field
descriptors should always be
populated on a numeric basis even
when they are defined as numeric
blank by the current standard. Either
format will pass validation but
forcing the value to complete numeric
may allow a generated x9 file to be be
more acceptable to receiving
processors.

<fields> micrTransitSymbol Default is “A” and is not case
sensitive; used to parse the MICR
line.

<fields> micrAmountSymbol Default is “B” and is not case
sensitive; used to parse the MICR
line.

Page 177 of 194

X9Utilities User Guide X9Ware LLC

XML
Group XML Field Name

Populated
Into Notes

<fields> micrOnUsSymbol Default is “C” and is not case
sensitive; used to parse the MICR
line.

<fields> micrDashSymbol Default is “D” and is not case
sensitive; used to parse the MICR
line.

Page 178 of 194

X9Utilities User Guide X9Ware LLC

Appendix: X9 Record TypesAppendix: X9 Record Types

Type 25 Check Detail Record

The Check Detail Record represents a single check (item) and may appear only within an active
bundle. It is typically present in a forward presentment ,cash letter which is identified with a Collection
Type Indicator of ‘00’, ‘01’ or ‘02’. Each type 25 record represents a single item. The data in Fields 2
through 7 represent the check MICR line which was captured from the item.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “25”.

2 Aux OnUs C 3 15 NBSM

3 External
Processing Code
(EPC)

C 18 1 ANS

4 Payor Bank
Routing

M 19 8 N First eight digits of the routing as
captured from the MICR line.

5 Payor Bank
Routing Check
Digit

C 27 1 NBSM Ninth digit of the routing as captured
from the MICR line.

6 On Us C 28 20 NBSM

7 Amount M 48 10 N Item amount.

8 Item Sequence
Number

M 58 15 NB Your internal sequence number
assigned to this item as a unique
identification.

9 Documentation
Type Indicator

C 73 1 AN Suggested value “G” which is image
included with no paper provided.

10 Return Acceptance
Indicator

C 74 1 AN Suggested value “1” which is indicates
acceptance of preliminary return
notifications, returns, and final return
notifications.

11 MICR Valid
Indicator

C 75 1 N Suggested value “1” which indicates
good MICR read.

12 BOFD Indicator M 76 1 A Suggested value “Y” which indicates
that the ECE institution is BOFD.

13 Addendum Count M 77 2 N Must be set to 00 when there are not
addendums for this check detail

Page 179 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

record.

14 Correction
Indicator

C 79 1 N Suggested value spaces since the field
is conditional.

0’ No Repair
‘1’ Repaired
‘2’ Repaired without Intervention
‘3’ Repaired with Operator
Intervention
‘4’ Undetermined ‘4’ Undetermined

15 Archive Type
Indicator

C 80 1 AN Suggested value spaces since the field
is conditional.

Type 26 Check Detail Addendum A Record

The Check Detail Addendum A Record represents the Bank of First Deposit (BOFD) endorsement for
this item. Presence of this record type is conditional and is used to document a specific processing
entity within the endorsement chain. There is typically only a single type 26 record for a given item,
but that requirement is not absolute subject to clearing arrangements. The type 26 endorsement record
must always follow its immediately preceding Check Detail Record (Type 25) or another Check Detail
Addendum A Record (Type 28). It is one of three addendum type records which are available for use
within the Check Detail Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “26”.

2 Check Detail
Addendum A
Record Number

M 3 1 N Assigned sequentially beginning with
1.

3 Bank of First
Deposit (BOFD)
Routing
Number

C 4 9 N

4 Business
(Endorsement)
Date

C 13 8 N

5 Item Sequence
Number

C 21 15 NB

Page 180 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

6 Deposit Account
Number at BOFD

C 36 18 ANS

7 Deposit Branch C 54 5 ANS

8 Payee Name C 59 15 ANS

9 Truncation
Indicator

C 74 1 A Y’ Yes this institution truncated the
original check
‘N’ No this institution did not truncate
the original check

10 Conversion
Indicator

C 75 1 AN ‘0’ Did not convert physical document
‘1’ Original paper converted to IRD
‘2’ Original paper converted to image
‘3’ IRD converted to another IRD
‘4’ IRD converted to image of IRD
‘5’ Image converted to an IRD
‘6’ Image converted to another image
‘7’ Did not convert image
‘8’ Undetermined

11 Correction
Indicator

C 76 1 N 0’ No Repair
‘1’ Repaired
‘2’ Repaired without Intervention
‘3’ Repaired with Operator
Intervention
‘4’ Undetermined

12 User Field C 77 1 ANS

13 Reserved M 78 3 B

Type 27 Check Detail Addendum B Record

The Check Detail Addendum B Record is conditional and is typically used to define the location of an
image within an image archive. It should only be present only under defined clearing arrangements.
The image archive locator record should always its immediately preceding Check Detail Record (Type
25) or a Check Detail Addendum A Record (Type 26) when present. Only one Check Detail Addendum
B Record is permitted for a Check Detail Record (Type 25). It is one of three addendum type records
which are available for use within the Check Detail Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “33”.

Page 181 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

2 Variable Size
Record Indicator

M 3 1 N 0’ this is an 80-byte record; Field 2 has
a value of 34.
‘1’ Field 5 is variable size.

3 Microfilm Archive
Sequence Number

C 4 15 NB

4 Length of Image
Archive Locator

M 19 4 N Value must be 1 through 999.

5 Image Archive
Locator

C 23 34 ANS

6 Description C 57 15 ANS

7 User Field C 72 4 ANS

8 Reserved M 76 5 B

Type 28 Check Detail Addendum C Record

The Check Detail Addendum C Record represents a subsequent endorsement for this item. Presence of
this record type is conditional and is used to document a specific processing entity within the
endorsement chain. There may be multiple type 28 records for a given item and they are sequentially
numbered beginning at one. The type 28 endorsement record must immediately follow its Check Detail
Record (Type 25), Check Detail Addendum A Record (Type 26), or a Check Detail Addendum B
Record (Type 27) when present. It is one of three addendum type records which are available for use
within the Check Detail Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “28”.

2 Check Detail
Addendum C
Record Number

M 3 2 N Assigned sequentially beginning with
1.

3 Bank Routing C 5 9 N

4 Endorsement Date C 14 8 N

5 Item Sequence
Number

C 22 15 NB

6 Truncation
Indicator

C 37 1 A Y’ Yes this institution truncated the
original check
‘N’ No this institution did not truncate
the original check

Page 182 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

7 Conversion
Indicator

C 38 1 AN ‘0’ Did not convert physical document
‘1’ Original paper converted to IRD
‘2’ Original paper converted to image
‘3’ IRD converted to another IRD
‘4’ IRD converted to image of IRD
‘5’ Image converted to an IRD
‘6’ Image converted to another image
‘7’ Did not convert image
‘8’ Undetermined

8 Correction
Indicator

C 39 1 N 0’ No Repair
‘1’ Repaired
‘2’ Repaired without Intervention
‘3’ Repaired with Operator Intervention
‘4’ Undetermined

9 Return Reason C 40 1 AN

10 User Field C 41 15 ANS

11 Reserved M 56 15 B

Type 31 Return Record

The Return Record represents a single check (item) and may appear only within an active bundle. It is
typically present in a return cash letter which is identified by a Collection Type Indicator (10.2) set to a
value of '03' (Return), ‘04’ (Return Notification), ‘05’ (Preliminary Return Notification), or ‘06’ (Final
Return Notification). Each type 31 record represents a single item that often times is being returned as a
result of a type 26 forward presentment item. Note that the Auxiliary On-Us field is not present in this
record type, due to a lack of space, and is present in the optional type 32 record which follows.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “31”.

2 Payor Bank
Routing

M 3 8 N First eight digits of the routing as
captured from the MICR line.

3 Payor Bank
Routing Check
Digit

C 11 1 NBSM Ninth digit of the routing as captured
from the MICR line.

4 On Us C 12 20 NBSM

5 Item Amount M 32 10 N

6 Return Reason M 42 1 AN ‘A’ NSF - Not Sufficient Funds

Page 183 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

‘B’ UCF - Uncollected Funds Hold
‘C’ Stop Payment
‘D’ Closed Account
‘E’ UTLA - Unable to Locate Account
‘F’ Frozen/Blocked Account
‘G’ Stale Dated
‘H’ Post Dated
'I’ Endorsement Missing
‘J’ Endorsement Irregular
‘K’ Signature(s) Missing
‘L’ Signature(s) Irregular
‘M’ Non-Cash Item (Non-Negotiable)
‘N’ Altered/Fictitious Item
‘O’ Unable to Process (e.g. Mutilated
Item)
‘P’ Item Exceed Dollar Limit
‘Q’ Not Authorized
‘R’ Branch/Account Sold (Wrong
Bank)
‘S’ Refer to Maker
‘T’ Stop Payment Suspect
‘U’ Unusable Image (Image could not
be used for required business purpose)
‘V’ Image fails security check
‘W’ Cannot Determine Amount

7 Return Record
Addendum Count

M 43 2 N

8 Return
Documentation
Type Indicator

C 45 1 AN ‘A’ No image provided, paper provided
separately
‘B’ No image provided, paper provided
separately, image upon request
‘C’ Image provided separately, no paper
provided
‘D’ Image provided separately, no
paper provided, image upon request
‘E’ Image and paper provided
separately
‘F’ image and paper provided
separately, image upon request
‘G’ Image included, no paper provided
‘H’ Image included, no paper provided,
image upon request

Page 184 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

‘I’ Image included, paper provided
separately
‘J’ Image included, paper provided
separately, image upon request
‘K’ No image provided, no paper
provided
‘L’ No image provided, no paper
provided, image upon request
‘M’ No image provided, Electronic
Check provided separately

9 Forward Bundle
Date

C 46 8 N

10 Item Sequence
Number

C 54 15 NB

11 External
Processing Code

C 69 1 ANS

12 Return
Notification
Indicator

C 70 1 N ‘1’ Preliminary notification
‘2’ Final notification

13 Return Archive
Type Indicator

C 71 1 AN ‘A’ Microfilm
‘B’ Image
‘C’ Paper
‘D’ Microfilm and image
‘E’ Microfilm and paper
‘F’ Image and paper
‘G’ Microfilm, image and paper
‘H’ Electronic Check Instrument
‘I’ None

14 Reserved M 72 9 B

Type 32 Return Addendum A Record

The Return Addendum A Record represents the Bank of First Deposit (BOFD) endorsement for this
item. Its presence is conditional. There is typically only a single type 31 record for a given item, but
that requirement is not absolute subject to clearing arrangements. The type 32 endorsement record must
always follow its immediately preceding Return Record (Type 31) or another Return Addendum A
Record (Type 32). It is one of four addendum type records which are available for use with the Return
Record item group.

Page 185 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “32”.

2 Return Addendum
A Record Number

M 3 1 N Assigned sequentially beginning with
1.

3 Bank of First
Deposit (BOFD)
Routing
Number

C 4 9 N

4 Business
(Endorsement)
Date

C 13 8 N

5 Item Sequence
Number

C 21 15 NB

6 Deposit Account
Number at BOFD

C 36 18 ANS

7 Deposit Branch C 54 5 ANS

8 Payee Name C 59 15 ANS

9 Truncation
Indicator

C 74 1 A Y’ Yes this institution truncated the
original check
‘N’ No this institution did not truncate
the original check

10 Conversion
Indicator

C 75 1 AN ‘0’ Did not convert physical document
‘1’ Original paper converted to IRD
‘2’ Original paper converted to image
‘3’ IRD converted to another IRD
‘4’ IRD converted to image of IRD
‘5’ Image converted to an IRD
‘6’ Image converted to another image
‘7’ Did not convert image
‘8’ Undetermined

11 Correction
Indicator

C 76 1 N 0’ No Repair
‘1’ Repaired
‘2’ Repaired without Intervention
‘3’ Repaired with Operator Intervention
‘4’ Undetermined

12 User Field C 77 1 ANS

13 Reserved M 78 3 B

Page 186 of 194

X9Utilities User Guide X9Ware LLC

Type 33 Return Addendum B Record

The Return Addendum B Record is conditional and should be present unless omitted under clearing
arrangements. Only one Return Addendum B Record is permitted for a Return Record (Type 31) and it
shall must follow its associated Return Record (Type 31) or Return Addendum A Record (Type 32)
when present. It is one of four addendum type records available for use with the Return Record item
group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “33”.

2 Payor Bank Name C 3 18 A

3 Auxiliary On-Us C 21 15 NBSM

4 Item Sequence
Number

C 36 15 NB

5 Business Date C 51 8 N

6 Account Name C 59 22 ANS

Type 34 Return Addendum C Record

The Return Addendum C Record is conditional and is typically used to define the location of an image
within an image archive. It should only be present only under defined clearing arrangements. The
image archive locator record should always its immediately preceding Return Record (Type 31), a
Return Addendum A Record (Type 32), or Return Addendum B Record (Type 33) when present. Only
one Return Addendum C Record is permitted for a Return Record (Type 31). It is one of four
addendum type records available for use with the Return Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “33”.

2 Variable Size
Record Indicator

M 3 1 N 0’ this is an 80-byte record; Field 2 has
a value of 34.
‘1’ Field 5 is variable size.

3 Microfilm Archive
Sequence Number

C 4 15 NB

4 Length of Image
Archive Locator

M 19 4 N Value must be 1 through 999.

5 Image Archive C 23 34 ANS

Page 187 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

Locator

6 Description C 57 15 ANS

7 User Field C 72 4 ANS

8 Reserved M 76 5 B

Type 35 Return Addendum D Record

The Return Addendum D Record represents a subsequent endorsement for this item. Presence of this
record type is conditional and is used to document a specific processing entity within the endorsement
chain. There may be multiple type 35 records for a given item and they immediately follow its Return
Record (Type 31), Return Addendum A Record (Type 32), Return Addendum B Record (Type 33), or
Return Addendum C Record (Type 34) when present. It is one of four addendum type records available
for use with the Return Record item group.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “28”.

2 Return Addendum
D Record Number

M 3 2 N Assigned sequentially beginning with
1.

3 Bank Routing C 5 9 N

4 Endorsement Date C 14 8 N

5 Item Sequence
Number

C 22 15 NB

6 Truncation
Indicator

C 37 1 A Y’ Yes this institution truncated the
original check
‘N’ No this institution did not
truncate the original check

7 Conversion
Indicator

C 38 1 AN ‘0’ Did not convert physical
document
‘1’ Original paper converted to IRD
‘2’ Original paper converted to image
‘3’ IRD converted to another IRD
‘4’ IRD converted to image of IRD
‘5’ Image converted to an IRD
‘6’ Image converted to another image
‘7’ Did not convert image
‘8’ Undetermined

Page 188 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

8 Correction
Indicator

C 39 1 N 0’ No Repair
‘1’ Repaired
‘2’ Repaired without Intervention
‘3’ Repaired with Operator
Intervention

9 Return Reason C 40 1 AN A’ NSF - Not Sufficient Funds
‘B’ UCF - Uncollected Funds Hold
‘C’ Stop Payment
‘D’ Closed Account

10 User Field C 41 15 ANS

11 Reserved M 56 15

Type 61 Format (001) “Metavante”

The Credit Reconciliation record type 61 format 001 is commonly used and can often be identified
based on the presence of 13 fields.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “61”.

2 MICR AuxOnUs C 3 15 NBSM

3 External
Processing Code
(EPC)

C 18 1 N

4 Payor Bank
Routing

M 19 9 N

5 MICR OnUs M 28 20 NBSM

6 Amount M 48 10 N

7 Item Sequence
Number

M 58 15 NB

8 Documentation
Type Indicator

C 73 1 AN

9 Type of Account C 74 1 A

10 Source of Work C 75 1 AN

11 Work Type C 76 1 ANS

Page 189 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

12 Debit Credit
Indicator

C 77 1

13 Reserved C 78 3 ANS Blanks

Type 61 Format (002) “DSTU”

The Credit Reconciliation record type 61 format 002 is commonly used and can often be identified
based on the presence of 12 fields.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “61”.

2 Record Usage
Indicator

M 3 1 AN

3 MICR AuxOnUs C 4 15 NBSM

4 External
Processing Code
(EPC)

C 19 1 N

5 Payor Bank
Routing

M 20 9 N

6 MICR OnUs M 29 20 NBSM

7 Amount M 49 10 N

8 Item Sequence
Number

M 59 15 NB

9 Documentation
Type Indicator

C 74 1 AN

10 Type of Account C 75 1 A

11 Source of Work C 76 2 AN

12 Reserved C 78 3 ANS Blanks

Page 190 of 194

X9Utilities User Guide X9Ware LLC

Type 61 Format (003) “x9.100-180”

The Credit Reconciliation record type 61 format 003 is not commonly used since it has a record length
of 84 instead of the much more standard length of 80 that is shared by all x9 record formats.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “61”.

2 Record Usage
Indicator

M 3 1 AN

3 MICR AuxOnUs C 4 15 NBSM

4 External
Processing Code
(EPC)

C 19 1 N

5 Payor Bank
Routing

M 20 9 N

6 MICR OnUs M 29 20 NBSM

7 Amount M 49 14 N

8 Item Sequence
Number

M 63 15 NB

9 Documentation
Type Indicator

C 78 1 AN

10 Type of Account C 79 1 A

11 Source of Work C 80 2 AN

12 Reserved C 82 3 ANS Blanks

Type 62 Format (000) “x9.100-187-2013”

The Credit Reconciliation record type 62 format 000 was introduced as part of the x9.100-187-2013
standard and is included in x9.100-187-2016 and beyond. Note the length of this record is 100 and not
80, which makes it very different from the various type 61 credit layouts.

Field Field Name Usage Position Length Format Notes

1 Record Type M 1 2 N Value “62”.

Page 191 of 194

X9Utilities User Guide X9Ware LLC

Field Field Name Usage Position Length Format Notes

2 MICR AuxOnUs C 3 15 NBSM

3 External
Processing Code
(EPC)

C 18 1 NS

4 Payor Bank
Routing

M 19 9 N

5 MICR OnUs M 28 20 NBSMOS

6 Amount M 48 14 N

7 Item Sequence
Number

M 62 15 NB

8 Documentation
Type Indicator

C 77 1 AN

9 Type of Account C 78 1 AN

10 Source of Work C 79 2 N

11 User Field C 81 16 ANS

12 Reserved M 97 4 ANS Blanks

Page 192 of 194

X9Utilities User Guide X9Ware LLC

HeaderXml937 Editor

X9Vision ? X9Validator ? X9Assist? X9.37 ? ACH ? CPA005 ?

NO YES YES YES NO NO

HeaderXml937 Editor is an editor that allows the HeaderXml parameter files used by the X9Utilities “-
write” command to be viewed, modified, and saved. These xml parameter files define the x9.37
attributes that are used by “-write” to generate output files.

HeaderXml937 Editor is available as part of our X9Validator and X9Assist desktop tools. These xml
parameter files define the x9.37 attributes that are used by the X9Utilities “-write” function to generate
output files.

This editor makes the process of creating and updating those parameters much easier than the
alternative of using a simple text editor (eg, NotePad or NotePad++). Using our HeaderXml937 Editor
eliminates the xml document errors that can often result from that alternative process. This editor
allows you to concentrate on content and not all of the technical intricacies that are associated with an
XML file.

There are a substantial number of fields defined within the HeaderXml definition, which can add to the
complexity of both entering and updating these fields. To make things a bit easier, all fields have been
grouped based on function, using tabs which are located in the right-most column of the editor. These
groups bring related fields together onto a single panel. This makes it much easier to find any given
parameter and allows you to easily view all of the parameters for that same topic.

Each of the field panels have several right-side columns that provide additional insight into the fields
associated fields.

• The far-right column is formatted with [nn] where “nn” is the maximum length of this data
field. The editor will begin to beep (as an error indicator) if you attempt to overfill the
capability of any given field

• The second column from the right provided information as to how a given field is used, or
where the entered data will be populated, which can be very useful information when creating
and modifying these parameter files.

The following tabs are available within the editor:

• Structure – defines high level fields that are associated with the overall file.

• File Headers – defines fields that are associated with the type 01 record.

• Cash Letter Headers – defines fields that are associated with the type 10 record.

• Items – defines fields that are associated with the type 25 record.

Page 193 of 194

X9Utilities User Guide X9Ware LLC

• Credits – defines fields that are associated with the type 61/62/25 credit records.

• BOFD Addenda – defines fields that are associated with the type 26 (forward presentment) or
type 32 (return) records that are attached to all items.

• Secondary Addenda – defines fields that are associated with the type 28 (forward presentment)
or type 35 (return) records that are attached to all items.

• Image View Detail – defines fields that are associated with the type 50 record.

• Image View Data – defines fields that are associated with the type 52 record.

• MICR Symbols – defines the control characters that are to be used when building MICR line
data from the underlying component fields.

The following functions are provided on the action line at the bottom of the editor panel:

• Cancel – exits the editor; anything that has been saved will remain in that state and will not be
undone.

• Load – allows a new file to be loaded. The current content within the editor will be replaced
with the chosen file; the current content will be lost.

• Save – allows the current editor contents to be saved to an output XML file.

• Reset – resets the editor to a default status.

Page 194 of 194

	X9Utilities Console
	X9Utilities and Related Products
	X9 Image Exchange Standards
	Windows EXE Batch Scripts
	x9writer.bat – example #1
	x9writerProcessor.bat – example #2
	Batch Image Conversions
	Emails on failures

	Java JRE and Command Line Scripts
	Using a Fully Qualified “java.exe" Reference

	System Log
	Console Logging
	System Log Correlation
	Command Help
	Exit Codes
	Batch / Script Operations
	Write and Translate
	Export and Import
	File ID Modifier XML File
	Supported x9 Configurations
	Supported x9 Record Types
	X9.37 Data Types
	Write
	Command line options
	Command line examples
	X9 Configuration Reference
	Automated Image Repair
	MICR Line
	HeaderXml Reference
	Items
	Credits
	Excessive Field Sizes
	Credit Types
	Credit Images
	Custom Type 61 Credit Formats
	Item Images
	Paid Stamp
	Batch Profiles
	New Bundle Statement
	System Log Correlation
	END Statement
	Sample Items File
	Sample Items File with a Credit
	Sample Items File with User Defined 26/28 Records

	Drawn Images and Remotely Created Checks (RCC)
	What is a Remotely Created Check (RCC)?
	FED Position as of January 2019 -- Due Diligence Required
	RCC Items Should be Assigned EPC “6"
	Our RCC Support Leverages “-write" Functionality
	Using Image Templates
	Drawing Images

	Create
	Image conversion
	E13B-Threading
	CSV conversion of i25 to t25
	All Writer functionality can be leveraged
	ImageFolder and Base64 image strings
	End statement
	Action CSV
	FAILURES CSV
	Command line options
	Command line examples
	Sample items file

	Draw
	Command line options
	Draw csv line types
	Command line examples

	Translate
	Command line options
	Command line examples

	Write/Translate Sample CSV files
	Export
	Export versus ExportCsv
	Export Formats for X9.37 Output
	Command line options
	Command line examples
	Export Considerations
	Sample CSV output (which is the default format)
	XML Flat Format Example (created using the -xmlf switch)
	XML Hierarchical Format Example (created using the -xmlh switch)

	ExportCsv
	ExportCsv field names
	Special field names
	Image formats
	Image methods
	Command line options
	Command line examples
	ExportCsv XML Definition
	Sample XML for Forward Presentment and Returns
	Sample ExportCsv Output File

	Import
	Command line options
	Command line examples
	Excessive Field Sizes

	Validate
	Command line options
	Command line examples
	Exit status
	Error File Columns
	Error File example
	Custom Rules

	Qualify
	Input Images from CSV or Folders
	Output CSV format
	Exit status
	Command line options
	Command line examples
	Sample CSV output file

	Make
	Command line options
	Command line examples
	Exit status

	Merge
	Landing Zone Batch Script
	Landing Zone Watcher Script
	Command line options
	Command line examples
	Time Stamp file format
	Exit status

	Compare
	Command Line Options
	Command line examples
	Exit status

	Scrub
	Command line options
	Command line examples
	Scrub results CSV File

	ImagePull
	Input CSV
	Results CSV
	Extracted Image File Names
	Error CSV
	XML parameter file
	Command line options
	Command line examples

	Update
	Command line options
	Command line examples
	Update Results CSV File
	Constants
	Look Back to Previous Values
	External Table Lookups
	Update XML File Examples
	RegEx Online Tools
	AI Assistance
	RegEx Examples

	Split
	Command line options
	Command line examples
	Default Output Segment
	Skipped Items
	Auto-Reconcilement
	Output Segment Totals
	Output Segment File Names
	Split Results CSV File
	Split XML Tag Names
	Split XML file examples
	RegEx examples

	Embedded Use of the X9Ware SDK
	Bitonal Image Thresholding
	Bitonal Image Challenges
	Bitonal Thresholding Techniques

	MICR Line Format and Standards
	MICR Line Standards
	MICR Line Parsing
	MICR Line Characters
	MICR Line Fields
	MICR Line Layout
	MICR Line RegEx

	Appendix: HeaderXml
	Editing HeaderXml
	HeaderXml as Written to the Log
	X9 File Structure
	Inclusion of Credits in Trailer Totals
	HeaderXml Fields defined within the <info> group
	HeaderXml Fields defined within the <fields> group

	Appendix: X9 Record Types
	Type 25 Check Detail Record
	Type 26 Check Detail Addendum A Record
	Type 27 Check Detail Addendum B Record
	Type 28 Check Detail Addendum C Record
	Type 31 Return Record
	Type 32 Return Addendum A Record
	Type 33 Return Addendum B Record
	Type 34 Return Addendum C Record
	Type 35 Return Addendum D Record
	Type 61 Format (001) “Metavante”
	Type 61 Format (002) “DSTU”
	Type 61 Format (003) “x9.100-180”
	Type 62 Format (000) “x9.100-187-2013”

	HeaderXml937 Editor

